1. Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

To learn the current status of any Internet-Draft, please check the "'lid-abstracts.txt'" listing contained in the Internet-Drafts Shadow Directories on ftp.ietf.org (US East Coast), nic.nordu.net (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific Rim).

Copyright Notice

Copyright (C) The Internet Society (1998). All Rights Reserved.
2. Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in TCP/IP-based internets. In particular, it defines objects for managing Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) interfaces. This document is a companion to the documents that define Managed Objects for the DS1/E1/DS2/E2 and DS3/E3 Interface Types [24][25].

Textual Conventions used in this MIB are defined in [6] and [36].

This memo replaces RFC1595 [30]. Changes relative to RFC1595 are summarized in the MIB module’s REVISION clause.
3. The SNMP Network Management Framework

The SNMP Management Framework presently consists of five major components:

- An overall architecture, described in RFC 2271 [1].
- Mechanisms for describing and naming objects and events for the purpose of management. The first version of this Structure of Management Information (SMI) is called SMIv1 and described in RFC 1155 [2], RFC 1212 [3] and RFC 1215 [4]. The second version, called SMIv2, is described in RFC 1902 [5], RFC 1903 [6] and RFC 1904 [7].
- Message protocols for transferring management information. The first version of the SNMP message protocol is called SNMPv1 and described in RFC 1157 [8]. A second version of the SNMP message protocol, which is not an Internet standards track protocol, is called SNMPv2c and described in RFC 1901 [9] and RFC 1906 [10]. The third version of the message protocol is called SNMPv3 and described in RFC 1906 [10], RFC 2272 [11] and RFC 2274 [12].
- Protocol operations for accessing management information. The first set of protocol operations and associated PDU formats is described in RFC 1157 [8]. A second set of protocol operations and associated PDU formats is described in RFC 1905 [13].
- A set of fundamental applications described in RFC 2273 [14] and the view-based access control mechanism described in RFC 2275 [15].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the mechanisms defined in the SMI.

This memo specifies a MIB module that is compliant to the SMIv2. A MIB conforming to the SMIv1 can be produced through the appropriate translations. The resulting translated MIB must be semantically equivalent, except where objects or events are omitted because no translation is possible (e.g., use of Counter64). Some machine readable information in SMIv2 will be converted into textual descriptions in SMIv1 during
the translation process. However, this loss of machine readable information is not considered to change the semantics of the MIB.
4. Overview

These objects are used when the particular media being used to realize an interface is a SONET/SDH interface. At present, this applies to these values of the ifType variable in the Internet-standard MIB:

sonet (39), sonetPath (50), sonetVT (51)

The definitions contained herein are based on the SONET/SDH specifications in ANSI T1.105 and T1.106-1988 [19][20][21] and CCITT G.707, 708, 709, and G.783 [26][27][28][29].

4.1. Use of the ifTable

This section specifies how the MIB II interfaces group, as defined in [23], is used for SONET/SDH interfaces. The SONET/SDH layers support several multiplexing possibilities.

For example in SONET, a Synchronous Transport Signal 3 (STS-3) has 3 SONET Paths, and a STS-3c has 1 SONET Path. Another example could be a STS-12 having 4 SONET STS-3c Paths. Similarly, a SONET Synchronous Payload Envelope (SPE) can carry many Virtual Tributaries (VTs), for example, one SONET SPE can carry 28 VT1.5s. It is important to note that an SPE and a VT in SONET is collectively referred to as a Virtual Container (VC) in SDH. Also, an STS is called Synchronous Transport Module (STM) in SDH.

Not all SONET/SDH equipment terminates all SONET/SDH layers. For example, a SONET/SDH STE regenerator terminates SONET/SDH Sections only, and is transparent for all layers above that. SONET/SDH Add-Drop multiplexers and Digital Cross Connect Systems terminate SONET/SDH Lines. SONET/SDH Terminal Multiplexers may also terminate SONET/SDH Paths and VTs/VCs.

MIB II [16], as extended by [23], accommodates these cases by appropriate use of the MIB II system group, and the interfaces group. The system group can name and describe the type of managed resource. The interfaces group defines which SONET/SDH layers apply, how these layers are configured and multiplexed. This is achieved by proper representation of SONET/SDH Layers by ifEntries as defined in [23], as follows:
Use of ifTable for a SONET/SDH port

The exact configuration and multiplexing of the layers is maintained in the ifStackTable [23].

4.2. Use of ifTable for SONET/SDH Medium/Section/Line Layer

Only the ifGeneralInformationGroup needs to be supported.

ifTable Object Use for combined SONET/SDH Medium/Section/Line Layer
===
ifIndex Interface index.
ifDescr SONET/SDH Medium/Section/Line
ifType sonet(39)
ifSpeed Speed of line rate for SONET/SDH, (e.g., 155520000 bps).

ifPhysAddress The value of the Circuit Identifier. If no Circuit Identifier has been assigned this object should have an octet string with zero length.

ifAdminStatus Supports read-only access. The desired administrative status of the interface.

ifOperStatus The value testing(3) is not used. This object assumes the value down(2), if the objects sonetSectionCurrentStatus and sonetLineCurrentStatus have any other value than sonetSectionNoDefect(1) and sonetLineNoDefect(1), respectively.

ifLastChange sysUpTime at the last change in ifOperStatus.

ifName Textual name of the interface or an OCTET STRING of zero length.

ifLinkUpDownTrapEnable Default value is enabled(1). Just read-only access may be supported.

ifHighSpeed Speed of line in Mega-bits per second (e.g., 155 Mbps)

ifConnectorPresent Set to true(1).

ifAlias The (non-volatile) alias name for this interface as assigned by the network manager.

4.3. Use of ifTable for SONET/SDH Paths

Only the ifGeneralInformationGroup needs to be supported.

ifTable Use for SONET/SDH Paths

ifIndex Interface index.

ifDescr SONET/SDH Path
ifType sonetPath(50)
ifSpeed set to speed of SONET/SDH path
(e.g., an STS-1 path has a
rate of 50112000 bps.)
ifPhysAddress Circuit Identifier or OCTET STRING of zero length.
ifAdminStatus Supports read-only access.
The desired administrative status of the
interface.
ifOperStatus This object assumes the value down(2),
if the object sonetPathCurrentStatus has
any other value than sonetPathNoDefect(1).
ifLastChange sysUpTime at the last change in ifOperStatus.
ifName Textual name of the interface or an OCTET STRING
of zero length.
ifLinkUpDownTrapEnable Default value is disabled(2).
Just read-only access may be supported.
ifHighSpeed Set to rate of SONET/SDH path
in Mega-bits per second.
ifConnectorPresent Set to false(2).
ifAlias The (non-volatile) alias name for this interface
as assigned by the network manager.

4.4. Use of ifTable for SONET/SDH VTs/VCs

Only the ifGeneralInformationGroup needs to be supported.

ifTable Object Use for SONET/SDH VTs/VCs
==============================
ifIndex Interface index.
ifDescr SONET/SDH VT/VC
ifType sonetVT(51)
ifSpeed Set to speed of VT/VC
(e.g., a VT1.5 has a rate of 1728000 bps.)

ifPhysAddress Circuit Identifier or OCTET STRING of zero length.

ifAdminStatus Supports read-only access.
The desired administrative status of the interface.

ifOperStatus This object assumes the value down(2),
if the object sonetVTCurrentStatus has
any other value than sonetVTNoDefect(1).

ifLastChange sysUpTime at the last change in ifOperStatus.

ifName Textual name of the interface or an OCTET STRING
of zero length.

ifLinkUpDownTrapEnable Default value is disabled(2).
Just read-only access may be supported.

ifHighSpeed Set to rate of VT in Mega-bits per second.

ifConnectorPresent Set to false(2).

ifAlias The (non-volatile) alias name for this interface
as assigned by the network manager.

4.5. SONET/SDH Terminology

The terminology used in this document to describe error conditions on a SONET circuit as monitored by a SONET system are from the T1.231 [22][31][35]. The terminology used in this document to describe error conditions on a SDH circuit as monitored by a SDH system are from the CCITT G.783 [29]. Only the SONET Performance Monitoring terminology is defined in this document. The definitions for SDH Performance Monitoring terms are similar but not identical, and they can be found in [29]. If the definition in this document does not match the definition in the T1.231 document, the implementer should follow the definition described in this document. In some cases other or additional references are used as compared with the ones cited above. This will be indicated in the text.
Internet Draft SONET/SDH Objects October 19, 1998

Section Loss Of Frame Failure (Out of Frame Event, Severely
Errored Frame Defect)
An Out of Frame (OOF) event (or Severely Errored Frame
defect) is the occurrence of four contiguous errored
frame alignment words. A frame alignment work occupies
the A1 and A2 bytes of an STS frame, and is defined in
T1.105. The SEF defect is terminated when two contiguous
error-free frame words are detected. Any implementation
of the frame recovery circuitry which achieves
realignment following an OOF within the 250 microsecond
(two frames) interval implied by this definition is
acceptable.

A Loss of Frame (LOF) defect is declared when an OOF/SEF
defect persists for a period of 3 milliseconds. The LOF
defect is terminated when the incoming signal remains
continuously in-frame for a period of 1 ms to 3 ms.

A LOF failure is declared when the LOF defect persists
for a period of 2.5 +/- 0.5 seconds, except when an LOS
defect or failure is present. The LOF failure is cleared
when the LOS failure is declared, or when the LOF defect
is absent for 10 +/- 0.5 seconds.

Loss of Signal
The Loss of Signal (LOS) defect is declared when no
transitions are detected on the incoming signal (before
descrambling). The LOS defect is detected upon
observing 2.3 to 100 microseconds of no transitions. The
LOS defect is cleared after a 125 microsecond interval
(one frame) during which no LOS defect is detected.

The LOS failure is declared when the LOS defect persists
for a period of 2.5 +/- 0.5 seconds, or if LOS defect is
present when the criteria for LOF failure declaration
have been met. The LOS failure is cleared when the LOS
defect is absent for a period of 10 +/- 0.5 seconds.
Declaration of LOS failure clears any existing LOF
failure. Clearing the LOS failure allows immediate
declaration of the LOF failure if conditions warrant.

STS-Path Loss of Pointer
A Loss of Pointer (LOP) defect is declared when either a
valid pointer is not detected in eight consecutive
frames, or when eight consecutive frames are detected

Expires 4/19/1999 [Page 10]
with the New Data Flag (NDF) set to "1001" without a valid concatenation indicator (see ANSI T1.105). A LOP defect is terminated when either a valid pointer with a normal NDF set to "0110", or a valid concatenation indicator is detected for three contiguous frames. Incoming STS-Path AIS shall not result in the declaration of a LOP defect.

An STS-Path LOP failure is declared when the STS-Path LOP defect persists for a period of 2.5 +/- 0.5 seconds. A STS-Path LOP failure is cleared when the STS-Path LOP defect is absent for 10 +/- 0.5 seconds.

VT Loss of Pointer
A VT LOP defect is declared when either a valid pointer is not detected in eight consecutive VT superframes, or when eight consecutive VT superframes are detected with the NDF set to "1001" without a valid concatenation indicator. A VT LOP defect is terminated when either a valid pointer with a normal NDF set to "0110", or a valid concatenation indicator is detected for three contiguous VT superframes. Incoming VT-Path AIS shall not result in declaring a VT LOP defect.

A VT LOP failure is declared when the VT LOP defect persists for 2.5 +/- 0.5 seconds. A VT LOP failure is cleared when the VT LOP defect is absent for 10 +/- 0.5 seconds.

Line Alarm Indication Signal
A Line Alarm Indication Signal (L-AIS) is defined in ANSI T1.105. The following criteria are specific to the L-AIS defect:

-- Line AIS defect is detected as a "111" pattern in bits 6, 7, and 8 of the K2 byte in five consecutive frames.

-- Line AIS defect is terminated when bits 6, 7, and 8 of the K2 byte do not contain the code "111" for five consecutive frames.

A Line AIS failure is declared when the Line AIS defect persists for a period of 20.5 +/- 0.5 seconds. A Line AIS failure is cleared when the Line AIS defect is absent for 10 +/- 0.5 seconds.
for 10 +/- 0.5 seconds.

STS-Path Alarm Indication Signal
The STS-Path Alarm Indication Signal (AIS) is defined in ANSI T1.105 as all ones in bytes H1, H2, and H3 as well as all ones in the entire STS SPE. The following criteria are specific to the STS-Path AIS defect:

-- STS-Path AIS defect is detected as all ones in bytes H1 and H2 in three contiguous frames.

-- The STS-Path AIS defect is terminated when a valid STS Pointer is detected with the NDF set to "1001" (inverted) for one frame, or "0110" (normal) for three contiguous frames.

An STS-Path AIS failure is declared when the STS-Path AIS defect persists for 2.5 +/- 0.5 seconds. An STS-Path AIS failure is cleared when the STS-Path AIS defect is absent for 10 +/- 0.5 seconds.

VT-Path Alarm Indication Signal
The VT-Path Alarm Indication Signal (AIS) is only applicable for VTs in the floating mode of operation. VT-Path AIS is used to alert the downstream VT Path Terminating Entity (PTE) of an upstream failure. Upon detection of a failure, Line AIS, or STS-Path AIS, an STS PTE will generate downstream VT-Path AIS if the STS Synchronous Payload Envelope (SPE) is carrying floating VTs. VT-Path AIS is specified in ANSI T1.105 as all ones in bytes V1, V2, V3, and V4, as well as all ones in the entire VT SPE. The following criteria are specific to VT-Path AIS defect:

-- VT-Path AIS defect is detected by a VT PTE as all ones in bytes V1 and V2 in three contiguous VT superframes.

-- VT-Path AIS defect is terminated when valid VT pointer with a valid VT size is detected with the NDF set to "1001" (inverted) for one VT superframe, or "0110" (normal) for three contiguous VT superframes are detected.

A VT-Path AIS failure is declared when the VT-Path AIS
A VT-Path AIS failure is cleared when the VT-Path AIS defect is absent for 10 +/- 0.5 seconds.

Line Remote Defect Indication

Line Remote Defect Indication (RDI) (aka Line FERF) signal is the occurrence of a "110" pattern in bit positions 6, 7, and 8 of the K2 byte in STS-1 #1 of the STS-N signal. Line RDI is defined in ANSI T1.105. The following criteria are specific to Line RDI defect:

--- Line RDI defect is a "110" code in bits 6, 7, and 8 of the K2 byte of in STS-1 #1 in x consecutive frames, where x = 5 [31][35] or 10 [35].

--- Line RDI defect is terminated when any code other than "110" is detected in bits 6, 7, and 8 of the K2 byte in x consecutive frames, where x = 5 [31][35] or 10 [35].

A Line Remote Failure Indication (RFI) failure is declared when the incoming Line RDI defects lasts for 2.5 +/- 0.5 seconds. The Line RFI failure is cleared when no Line RDI defects are detected for 10 +/- 0.5 seconds.

STS-Path Remote Defect Indication

STS-Path RDI (aka STS-Path FERF) signal shall be generated within 100 milliseconds by the STS PTE upon detection of an AIS or LOP defect. Transmission of the STS-Path RDI signal shall cease within 100 milliseconds when the STS PTE no longer detects STS-Path AIS or STS-Path LOP defect. The STS-Path RDI shall accurately report the presence or absence of STS-Path AIS or STS-Path LOP defects. STS-Path RDI defect is defined in ANSI T1.105. The following requirements are specific to the STS-Path RDI defect:

--- STS-Path RDI is detected by all STS PTEs. STS-Path RDI is detected by the upstream STS PTE as a "1" in bit five of the Path Status byte (G1) for x consecutive frames, where x = 5 [31] or 10 [35].

--- Removal of STS-Path Remote Defect Indication is detected by a "0" in bit 5 of the G1 byte in x consecutive frames, where x = 5 [31] or 10 [35].
An STS-Path Remote Failure Indication (RFI) failure is declared when the incoming STS-Path RDI defects lasts for 2.5 +/- 0.5 seconds. The STS-Path RFI failure is cleared when no STS-Path RDI defects are detected for 10 +/- 0.5 seconds.

VT-Path Remote Defect Indication
VT Path RDI (aka VT Path FERF) signal shall be generated within 100 milliseconds by the VT PTE upon detection of a VT-Path AIS or LOP defect. Transmission of the VT-Path RDI signal shall cease within 100 milliseconds when the VT PTE no longer detects VT-Path AIS or VT-Path LOP defect. The VT-Path RDI shall accurately report the presence or absence of VT-Path AIS or VT-Path LOP defects. VT-Path RDI defect is defined in ANSI T1.105. The following requirements are specific to VT-Path RDI defect:

- VT-Path RDI defect is the occurrence of a "1" in bit 4 of the VT-Path Overhead byte (V5) in x consecutive frames, where x = 5 [31] or 10 [35].

- VT-Path RDI defect is terminated when a "0" is detected in bit 4 of the VT-Path Overhead byte (V5) for x consecutive frames, where x = 5 [31] or 10 [35].

A VT-Path Remote Failure Indication (RFI) (derived) failure is declared when the incoming VT-Path RDI defects lasts for 2.5 +/- 0.5 seconds. The VT-Path RFI failure is cleared when no VT-Path RDI defects are detected for 10 +/- 0.5 seconds.

VT-Path Remote Failure Indication
The VT-Path RFI signal is only required for the case of byte synch mapped DS1s where the DS1 frame bit is not mapped. The VT-Path RFI is specified in ANSI T1.105, where it is currently called VT path yellow. When provided, the VT-Path RFI signal is used to indicate the occurrence of far-end failures. When the VT-Path RFI is not provided, far-end failures are derived from local timing of the VT-Path RDI defect. The VT-Path RFI failure is declared within 5 ms of detecting the incoming VT-Path RFI Signal. The VT-Path Remote Failure Indication (RFI) failure is cleared within 50 ms of detecting the removal of the incoming VT-Path RFI signal.
Coding Violation

Coding Violations (CV) are Bit Interleaved Parity (BIP) errors that are detected in the incoming signal. CV counters are incremented for each BIP error detected. That is, each BIP-8 can detect up to eight errors per STS-N frame, with each error incrementing the CV counter. Section CVs shall be collected using the BIP-8 in the B1 byte located in the Section Overhead of STS-1 #1. Line CVs shall be collected using the BIP-8s in B2 bytes located in the Line Overhead of each STS-1 (since all CVs on an STS-N line are counted together, this is equivalent to counting each error in the BIP-8*N contained in the B2 bytes of the STS-N Line Overhead). Thus, on an STS-N signal, up to 8 x N CVs may occur in each frame. Path CVs shall be collected using the BIP-8 in the B3 byte of the STS-Path Overhead of the STS SPE. VT CVs shall be collected using the BIP-2 in the V5 overhead byte of the floating VT.

Errored Seconds

At each layer, an Errored Second (ES) is a second with one or more Coding Violations at that layer OR one or more incoming defects (e.g., SEF, LOS, AIS, LOP) at that layer has occurred.

Severely Errored Seconds

According to Appendix B at each layer, an Severely Errored Second (SES) is a second with x or more CVs at that layer, or a second during which at least one or more incoming defects at that layer has occurred. The values of x in RFC1595 were based on Appendix B. These values have subsequently been relaxed in Appendix B. In addition, according to G.826 SESs are measured as a percentage of errored blocks.

To deal with these sets of definitions this memo defines an object sonetSESThresholdSet that determines the correct interpretation of SES. For backward compatibility, if this object is not implemented the interpretation of Appendix B shall apply. Otherwise, a more recent interpretation is suggested. An agent is not required to support all sets of definitions.

Note that if a manager changes the value of this object all SES statistics collected prior to this change shall

Expires 4/19/1999 [Page 15]
Severely Errored Framing Seconds
A Severely Errored Framing Second (SEFS) is a seconds
with containing one or more SEF events. This counter is
only counted at the Section Layer.

Unavailable Seconds
At the Line, Path, and VT layers, an unavailable second
is calculated by counting the number of seconds that the
interface is unavailable. At each layer, the SONET/SDH
interface is said to be unavailable at the onset of 10
contiguous SESs. The 10 SESs are included in unavailable
time. Once unavailable, the SONET/SDH interface becomes
available at the onset of 10 contiguous seconds with no
SESs. The 10 seconds with no SESs are excluded from
unavailable time. With respect to the SONET/SDH error
counts at each layer, all counters at that layer are
incremented while the SONET/SDH interface is deemed
available at that layer. While the interface is deemed
unavailable at that layer, the only count that is
incremented is UASs at that layer.

Note that this definition implies that the agent cannot
determine until after a ten second interval has passed
whether a given one-second interval belongs to available
or unavailable time. If the agent chooses to update the
various performance statistics in real time then it must
be prepared to retroactively reduce the ES, SES, and SEFS
counts by 10 and increase the UAS count by 10 when it
determines that available time has been entered. It must
also be prepared to reduce the CV count by the number of
violations counted since the onset of unavailable time.
The agent must be similarly prepared to retroactively
decrease the UAS count by 10 and increase the ES and CV
counts as necessary upon entering available time. A
special case exists when the 10 second period leading to
available or unavailable time crosses a 900 second
statistics window boundary, as the foregoing description
implies that the CV, ES, SES, SEFS, and UAS counts the
PREVIOUS interval must be adjusted. In this case
successive GETs of the affected sonetPathIntervalSES and
sonetPathIntervalUAS objects (and the analogous Line and
VT objects also) objects will return differing values if
the first GET occurs during the first few seconds of the
According to ANSI T1.231 unavailable time begins at the _onset_ of 10 contiguous severely errored seconds -- that is, unavailable time starts with the _first_ of the 10 contiguous SESs. Also, while an interface is deemed unavailable all counters for that interface are frozen except for the UAS count. It follows that an implementation which strictly complies with this standard must _not_ increment any counters other than the UAS count -- even temporarily -- as a result of anything that happens during those 10 seconds. Since changes in the signal state lag the data to which they apply by 10 seconds, an ANSI-compliant implementation must pass the one-second statistics through a 10-second delay line prior to updating any counters. That can be done by performing the following steps at the end of each one second interval.

i) Read near/far end CV counter and alarm status flags from the hardware.

ii) Accumulate the CV counts for the preceding second and compare them to the ES and SES threshold for the layer in question. Update the signal state and shift the one-second CV counts and ES/SES flags into the 10-element delay line. Note that far-end one-second statistics are to be flagged as "absent" during any second in which there is an incoming defect at the layer in question or at any lower layer.

iii) Update the current interval statistics using the signal state from the _previous_ update cycle and the one-second CV counts and ES/SES flags shifted out of the 10-element delay line.

This approach is further described in Appendix A. An agent may choose to use this approach in lieu of retroactive adjustments to the counters.

In any case, a linkDown trap shall be sent only after the agent has determined for certain that the unavailable state has been entered, but the time on the trap will be that of the first UAS (i.e., 10 seconds earlier). A linkUp trap shall be handled similarly.
Unequipped

If a Path or VT connection is not provisioned (idle) the SONET equipment will signal this state by transmitting the Path or VT Signal Label as follows:

- byte C2 of the STS Path Overhead equal to 0 for an unequipped Path,
- byte V5 of the VT Path Overhead equal to 0 for an unequipped VT.

Signal Label Mismatch

A Path or VT connection is not correctly provisioned if a received Path or VT Signal Label mismatch occurs. A received Signal Label is considered mismatched if it does not equal either the locally provisioned value or the value ‘equipped non-specific’ (1 hex). Note that any received non-zero Signal Label is considered a locally provisioned value of ‘equipped non-specific’. Only in-service, provisioned Path Terminating equipment can detect mismatched Signal labels. It is considered provisioned if it has been configured for a mapping and has been assigned signals to and from which the mapping takes place. While a Path is unequipped or has mismatched signal labels ES/SES counts continue, but these conditions do not themselves contribute to ES/SES.

Circuit Identifier

This is a character string specified by the circuit vendor, and is useful when communicating with the vendor during the troubleshooting process.
5. Object Definitions

SONET-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 Integer32, transmission
 FROM SNMPv2-SMI
 DisplayString, TruthValue
 FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF
 ifIndex
 FROM IF-MIB
 PerfCurrentCount, PerfIntervalCount
 FROM PerfHist-TC-MIB;

-- This is the MIB module for the SONET/SDH Interface objects.

sonetMIB MODULE-IDENTITY
 LAST-UPDATED "9810190000Z"
 ORGANIZATION "IETF AToM MIB Working Group"
 CONTACT-INFO
 "Kaj Tesink
 Bellcore
 Tel: (732) 758-5254
 Fax: (732) 758-2269
 E-mail: kaj@bellcore.com."
 DESCRIPTION
 "The MIB module to describe
 SONET/SDH interfaces objects."
 REVISION "9810190000Z"
 DESCRIPTION
 "The key changes made to this MIB module
 since its initial publication in RFC 1595
 are as follows.

(1) The MODULE-IDENTITY has been updated to reflect the
 changes to the MIB.

(2) Where applicable, the textual conventions
 PerfCurrentCount and PerfIntervalCount from
 PerfHist-TC-MIB have been used in place of Gauge32.
An agent now has the option to delay updates to the various performance counts in lieu of performing retroactive adjustments upon entering into or exiting from unavailable time. This implementation option is described in Appendix A of this memo.

In order to make the SONET-MIB more useful for circuit provisioning, the formerly read-only objects sonetMediumType, sonetMediumLineCoding, sonetMediumLineType, and sonetMediumCircuitIdentifier have been given a MAX-ACCESS of read-write. The MIN-ACCESS remains read-only.

The DESCRIPTION clause for sonetMediumTimeElapsed has been updated to describe its behaviour if the duration of the current interval exceeds the maximum value.

The DESCRIPTION clause for sonetMediumValidIntervals has been updated to describe its behaviour when some intervals may be unavailable, and the object sonetMediumInvalidIntervals has been added to keep count of the number of missing intervals (if any).

The object sonetMediumLoopbackConfig has been added to enable or disable loopback configurations.

Because the error count thresholds for declaring severely errored seconds that are specified in ANSI T1.231-1993, ITU-T G.826-1995, and ANSI T1.231-1997 are all different from each other and from the thresholds specified in RFC 1595, an enumerated INTEGER object sonetSESthresholdSet has been added to allow an agent to specify which threshold set is in use. Text has been added to Section 4 stating that if this object is not implemented the thresholds specified in RFC 1595 should be assumed, and the table containing those thresholds has been moved to Appendix B of this memo.

A column with SYNTAX TruthValue has been added to each interval table. The purpose of the additional column is to indicate, for each interval, whether the data is valid in the sense intended by ANSI T1.231 clause 9.1.2.2 [31][35]. The objects in question are:

sonetSectionIntervalValidData
sonetLineIntervalValidData
sonetFarEndLineIntervalValidData
sonetPathIntervalValidData
sonetFarEndPathIntervalValidData
sonetVTIntervalValidData
sonetFarEndVTIntervalValidData

(10) The ranges for sonetPathCurrentStatus and sonetVTCurrentStatus have been made consistent with the DESCRIPTION clauses.

(11) The conformance information has been updated. Previous conformance information from RFC 1595 has been deprecated. Some typographical errors in the deprecated section have been corrected in order to prevent MIB compilation errors."

REVISION "9401030000Z"
DESCRIPTION "The RFC1595 version of this MIB module."

::= { transmission 39 }

-- This is the MIB module for the SONET/SDH objects
sonetObjects OBJECT IDENTIFIER ::= { sonetMIB 1 }
sonetObjectsPath OBJECT IDENTIFIER ::= { sonetMIB 2 }
sonetObjectsVT OBJECT IDENTIFIER ::= { sonetMIB 3 }

-- groups in the SONET/SDH MIB module
sonetMedium OBJECT IDENTIFIER ::= { sonetObjects 1 }
sonetSection OBJECT IDENTIFIER ::= { sonetObjects 2 }
sonetLine OBJECT IDENTIFIER ::= { sonetObjects 3 }
sonetFarEndLine OBJECT IDENTIFIER ::= { sonetObjects 4 }
sonetPath OBJECT IDENTIFIER ::= { sonetObjectsPath 1 }
sonetFarEndPath OBJECT IDENTIFIER ::= { sonetObjectsPath 2 }
sonetVT OBJECT IDENTIFIER ::= { sonetObjectsVT 1 }
sonetFarEndVT OBJECT IDENTIFIER ::= { sonetObjectsVT 2 }
-- the SONET/SDH Medium group

-- SONET/SDH interfaces for some applications may be electrical
-- interfaces and not optical interfaces. This group handles
-- the configuration information for both optical SONET/SDH
-- interfaces and electrical SONET/SDH interfaces.

sonetMediumTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SonetMediumEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The SONET/SDH Medium table."
 ::= { sonetMedium 1 }

sonetMediumEntry OBJECT-TYPE
 SYNTAX SonetMediumEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in the SONET/SDH Medium table."
 INDEX { ifIndex }
 ::= { sonetMediumTable 1 }

SonetMediumEntry ::=
 SEQUENCE {
 sonetMediumType INTEGER,
 sonetMediumTimeElapsed Integer32,
 sonetMediumValidIntervals Integer32,
 sonetMediumLineCoding INTEGER,
 sonetMediumLineType INTEGER,
 sonetMediumCircuitIdentifier DisplayString,
 sonetMediumInvalidIntervals Integer32,
 sonetMediumLoopbackConfig BITS
 }

sonetMediumType OBJECT-TYPE
 SYNTAX INTEGER {
 sonet(1),
 sdh(2)
 }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION

Expires 4/19/1999
"This variable identifies whether a SONET or a SDH signal is used across this interface."
::= { sonetMediumEntry 1 }

sonetMediumTimeElapsed OBJECT-TYPE
SYNTAX Integer32 (1..900)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of seconds, including partial seconds, that have elapsed since the beginning of the current measurement period. If, for some reason, such as an adjustment in the system’s time-of-day clock, the current interval exceeds the maximum value, the agent will return the maximum value."
::= { sonetMediumEntry 2 }

sonetMediumValidIntervals OBJECT-TYPE
SYNTAX Integer32 (0..96)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of previous 15-minute intervals for which data was collected. A SONET/SDH interface must be capable of supporting at least n intervals. The minimum value of n is 4. The default of n is 32. The maximum value of n is 96. The value will be <n> unless the measurement was (re-)started within the last (<n>*15) minutes, in which case the value will be the number of complete 15 minute intervals for which the agent has at least some data. In certain cases (e.g., in the case where the agent is a proxy) it is possible that some intervals are unavailable. In this case, this interval is the maximum interval number for which data is available."
::= { sonetMediumEntry 3 }

sonetMediumLineCoding OBJECT-TYPE
SYNTAX INTEGER { sonetMediumOther(1), sonetMediumB3ZS(2), sonetMediumCMI(3),
sonetMediumNRZ(4),
sonetMediumRZ(5)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This variable describes the line coding for
this interface. The B3ZS and CMI are used for
electrical SONET/SDH signals (STS-1 and STS-3).
The Non-Return to Zero (NRZ) and the Return
to Zero are used for optical SONET/SDH signals."
::= { sonetMediumEntry 4 }

sonetMediumLineType OBJECT-TYPE
SYNTAX INTEGER {
 sonetOther(1),
 sonetShortSingleMode(2),
 sonetLongSingleMode(3),
 sonetMultiMode(4),
 sonetCoax(5),
 sonetUTP(6)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This variable describes the line type for
this interface. The line types are
Short and Long Range
Single Mode fiber or Multi-Mode fiber interfaces,
and coax and UTP for electrical interfaces. The
value sonetOther should be used when the Line Type is
not one of the listed values."
::= { sonetMediumEntry 5 }

sonetMediumCircuitIdentifier OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This variable contains the transmission
vendor’s circuit identifier, for the
purpose of facilitating troubleshooting.
Note that the circuit identifier, if available,
is also represented by ifPhysAddress."
::= { sonetMediumEntry 6 }

Expires 4/19/1999
sonetMediumInvalidIntervals OBJECT-TYPE
SYNTAX Integer32 (0..96)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The number of intervals in the range from 0 to sonetMediumValidIntervals for which no data is available. This object will typically be zero except in cases where the data for some intervals are not available (e.g., in proxy situations)."
::= { sonetMediumEntry 7 }

sonetMediumLoopbackConfig OBJECT-TYPE
SYNTAX BITS {
 sonetNoLoop(0),
 sonetFacilityLoop(1),
 sonetTerminalLoop(2),
 sonetOtherLoop(3) }
MAX-ACCESS read-write
STATUS current
DESCRIPTION
 "The current loopback state of the SONET/SDH interface. The values mean:

 sonetNoLoop
 Not in the loopback state. A device that is not capable of performing a loopback on this interface shall always return this value.

 sonetFacilityLoop
 The received signal at this interface is looped back out through the corresponding transmitter in the return direction.

 sonetTerminalLoop
 The signal that is about to be transmitted is connected to the associated incoming receiver.

 sonetOtherLoop
 Loopbacks that are not defined here."
::= { sonetMediumEntry 8 }

sonetSESThresholdSet OBJECT-TYPE
SYNTAX INTEGER {
 other(1),
 bellcore1991(2),
 ansi1993(3),
 itu1995(4),
 ansi1997(5)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"An enumerated integer indicating which
recognized set of SES thresholds that
the agent uses for determining severely
errored seconds and unavailable time.

other(1)
 None of the following.

bellcore1991(2)
 Bellcore TR-NWT-000253, 1991 [32], or
 ANSI T1M1.3/93-005R2, 1993 [22].
 See also Appendix B.

ansi1993(3)
 ANSI T1.231, 1993 [31], or
 Bellcore GR-253-CORE, Issue 2, 1995 [34]

itu1995(4)
 ITU Recommendation G.826, 1995 [33]

ansi1997(5)
 ANSI T1.231, 1997 [35]

If a manager changes the value of this
object then the SES statistics collected
prior to this change must be invalidated."
-- the SONET/SDH Section group

-- this group consists of 2 tables:
-- - the SONET/SDH Section Current Table
-- - the SONET/SDH Section Interval Table

-- the SONET/SDH Section Current Table

-- The SONET/SDH Section
-- current table contains various statistics
-- being collected for the current 15 minute interval.

sonetSectionCurrentTable OBJECT-TYPE
SYNTAX SEQUENCE OF SonetSectionCurrentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The SONET/SDH Section Current table."
::= { sonetSection 1 }

sonetSectionCurrentEntry OBJECT-TYPE
SYNTAX SonetSectionCurrentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the SONET/SDH Section Current table."
INDEX { ifIndex }
::= { sonetSectionCurrentTable 1 }

SonetSectionCurrentEntry ::=
 SEQUENCE{
 sonetSectionCurrentStatus Integer32,
 sonetSectionCurrentESs PerfCurrentCount,
 sonetSectionCurrentSESs PerfCurrentCount,
 sonetSectionCurrentSEFSs PerfCurrentCount,
 sonetSectionCurrentCVs PerfCurrentCount
 }

sonetSectionCurrentStatus OBJECT-TYPE
SYNTAX Integer32 (1..6)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This variable indicates the status of the interface. The sonetSectionCurrentStatus is a bit map represented as a sum, therefore, it can represent multiple defects simultaneously. The sonetSectionNoDefect should be set if and only if no other flag is set.

The various bit positions are:
 1 sonetSectionNoDefect
 2 sonetSectionLOS
 4 sonetSectionLOF"

 ::= { sonetSectionCurrentEntry 1 }

sonetSectionCurrentESs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Errored Seconds encountered by a SONET/SDH Section in the current 15 minute interval."

 ::= { sonetSectionCurrentEntry 2 }

sonetSectionCurrentSESs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Severely Errored Seconds encountered by a SONET/SDH Section in the current 15 minute interval."

 ::= { sonetSectionCurrentEntry 3 }

sonetSectionCurrentSEFSs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of
Severely Errored Framing Seconds
encountered by a SONET/SDH Section in the current
15 minute interval.

::= { sonetSectionCurrentEntry 4 }

sonetSectionCurrentCVs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Coding
Violations encountered by a
SONET/SDH Section in the current 15 minute interval."

::= { sonetSectionCurrentEntry 5 }
-- the SONET/SDH Section Interval Table

-- The SONET/SDH Section Interval Table
-- contains various statistics
-- collected by each system over a maximum
-- of the previous 24 hours of
-- operation. The past 24 hours may be broken into 96
-- completed 15 minute intervals.
-- A system is required to store at
-- least 4 completed 15 minute interval.
-- The default value is 32 intervals.

sonetSectionIntervalTable OBJECT-TYPE
SYNTAX SEQUENCE OF SonetSectionIntervalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The SONET/SDH Section Interval table."
::= { sonetSection 2 }

sonetSectionIntervalEntry OBJECT-TYPE
SYNTAX SonetSectionIntervalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the SONET/SDH Section Interval table."
INDEX { ifIndex,
 sonetSectionIntervalNumber }
::= { sonetSectionIntervalTable 1 }

SonetSectionIntervalEntry ::=
SEQUENCE {
 sonetSectionIntervalNumber Integer32,
 sonetSectionIntervalESs PerfIntervalCount,
 sonetSectionIntervalSESs PerfIntervalCount,
 sonetSectionIntervalSEFSs PerfIntervalCount,
 sonetSectionIntervalCVs PerfIntervalCount,
 sonetSectionIntervalValidData TruthValue
}

sonetSectionIntervalNumber OBJECT-TYPE
SYNTAX Integer32 (1..96)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"A number between 1 and 96, which identifies the interval for which the set of statistics is available. The interval identified by 1 is the most recently completed 15 minute interval, and the interval identified by N is the interval immediately preceding the one identified by N-1."

::= { sonetSectionIntervalEntry 1 }

sonetSectionIntervalESs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The counter associated with the number of Errored Seconds encountered by a SONET/SDH Section in a particular 15-minute interval in the past 24 hours."

::= { sonetSectionIntervalEntry 2 }

sonetSectionIntervalSESs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The counter associated with the number of Severely Errored Seconds encountered by a SONET/SDH Section in a particular 15-minute interval in the past 24 hours."

::= { sonetSectionIntervalEntry 3 }

sonetSectionIntervalSEFSs OBJECT-TYPE
SYNTAX PerfIntervalFSCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The counter associated with the number of Severely Errored Framing Seconds encountered by a SONET/SDH Section in a particular 15-minute interval in the past 24 hours."
::= { sonetSectionIntervalEntry 4 }

sonetSectionIntervalCVs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The counter associated with the number of Coding Violations encountered by a SONET/SDH Section in a particular 15-minute interval in the past 24 hours."
::= { sonetSectionIntervalEntry 5 }

sonetSectionIntervalValidData OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This variable indicates if the data for this interval is valid."
::= { sonetSectionIntervalEntry 6 }
The SONET/SDH Line Current Table

The SONET/SDH Line
-- current table contains various statistics
-- being collected for the current 15 minute interval.

sonetLineCurrentTable OBJECT-TYPE
SYNTAX SEQUENCE OF SonetLineCurrentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The SONET/SDH Line Current table."
 ::= { sonetLine 1 }

sonetLineCurrentEntry OBJECT-TYPE
SYNTAX SonetLineCurrentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the SONET/SDH Line Current table."
INDEX { ifIndex }
 ::= { sonetLineCurrentTable 1 }

SonetLineCurrentEntry ::= SEQUENCE {
 sonetLineCurrentStatus Integer32,
 sonetLineCurrentESs PerfCurrentCount,
 sonetLineCurrentSESs PerfCurrentCount,
 sonetLineCurrentCVs PerfCurrentCount,
 sonetLineCurrentUASs PerfCurrentCount
}

sonetLineCurrentStatus OBJECT-TYPE
SYNTAX Integer32 (1..6)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

Expires 4/19/1999
"This variable indicates the status of the interface. The sonetLineCurrentStatus is a bit map represented as a sum, therefore, it can represent multiple defects simultaneously. The sonetLineNoDefect should be set if and only if no other flag is set.

The various bit positions are:
1 sonetLineNoDefect
2 sonetLineAIS
4 sonetLineRDI"

::= { sonetLineCurrentEntry 1 }

sonetLineCurrentESs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Errored Seconds encountered by a SONET/SDH Line in the current 15 minute interval."
::= { sonetLineCurrentEntry 2 }

sonetLineCurrentSESs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Severely Errored Seconds encountered by a SONET/SDH Line in the current 15 minute interval."
::= { sonetLineCurrentEntry 3 }

sonetLineCurrentCVs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Coding
Violations encountered by a SONET/SDH Line in the current 15 minute interval.
 ::= { sonetLineCurrentEntry 4 }

sonetLineCurrentUASs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The counter associated with the number of Unavailable Seconds encountered by a SONET/SDH Line in the current 15 minute interval."
 ::= { sonetLineCurrentEntry 5 }
Internet Draft SONET/SDH Objects October 19, 1998

-- the SONET/SDH Line Interval Table

-- The SONET/SDH Line Interval Table
-- contains various statistics
-- collected by each system over a maximum
-- of the previous 24 hours of
-- operation. The past 24 hours may be broken into 96
-- completed 15 minute intervals.
-- A system is required to store at
-- least 4 completed 15 minute intervals.
-- The default value is 32 intervals.

sonetLineIntervalTable OBJECT-TYPE
SYNTAX SEQUENCE OF SonetLineIntervalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The SONET/SDH Line Interval table."
::= { sonetLine 2 }

sonetLineIntervalEntry OBJECT-TYPE
SYNTAX SonetLineIntervalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "An entry in the SONET/SDH Line Interval table."
INDEX { ifIndex,
 sonetLineIntervalNumber }
::= { sonetLineIntervalTable 1 }

SonetLineIntervalEntry ::=
SEQUENCE {
 sonetLineIntervalNumber Integer32,
 sonetLineIntervalESs PerfIntervalCount,
 sonetLineIntervalSESs PerfIntervalCount,
 sonetLineIntervalCVs PerfIntervalCount,
 sonetLineIntervalUASs PerfIntervalCount,
 sonetLineIntervalValidData TruthValue
}

sonetLineIntervalNumber OBJECT-TYPE
SYNTAX Integer32 (1..96)
MAX-ACCESS not-accessible
STATUS current

Expires 4/19/1999
DESCRIPTION
"A number between 1 and 96, which identifies the
interval for which the set of statistics is available.
The interval identified by 1 is the most recently
completed 15 minute interval,
and the interval identified
by N is the interval immediately preceding the
one identified
by N-1."
::= { sonetLineIntervalEntry 1 }

sonetLineIntervalESs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of
Errored Seconds encountered
by a SONET/SDH Line in a
particular 15-minute interval
in the past 24 hours."
::= { sonetLineIntervalEntry 2 }

sonetLineIntervalSESs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of
Severely Errored Seconds
encountered by a SONET/SDH Line in a
particular 15-minute interval
in the past 24 hours."
::= { sonetLineIntervalEntry 3 }

sonetLineIntervalCVs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Coding
Violations encountered by a
SONET/SDH Line in a
particular 15-minute interval
in the past 24 hours."
sonetLineIntervalUASs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The counter associated with the
 number of Unavailable Seconds
 encountered by a SONET/SDH Line in
 a particular 15-minute interval
 in the past 24 hours."
 ::= { sonetLineIntervalEntry 5 }

sonetLineIntervalValidData OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This variable indicates if the data for this
 interval is valid."
 ::= { sonetLineIntervalEntry 6 }
-- The SONET/SDH Far End Line group.
-- This group may only be implemented by SONET/SDH (LTEs)
-- systems that provide for a far end block error (FEBE)
-- information at the SONET/SDH Line Layer.

-- This group consists of two tables:
-- SONET/SDH Far End Line Current Table
-- SONET/SDH Far End Line Interval Table

-- The SONET/SDH Far End Line Current Table

-- The SONET/SDH Far End Line Current table contains
-- various statistics being
-- collected for the current 15 minute interval.
-- The statistics are collected from the far end
-- block error code (FEBE)
-- within the third 22 byte of the Line Overhead
-- in Broadband ISDN applications.
-- The definitions are the same as described for
-- the near-end information.

sonetFarEndLineCurrentTable OBJECT-TYPE
SYNTAX SEQUENCE OF SonetFarEndLineCurrentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The SONET/SDH Far End Line Current table."
::= { sonetFarEndLine 1 }

sonetFarEndLineCurrentEntry OBJECT-TYPE
SYNTAX SonetFarEndLineCurrentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the SONET/SDH Far End Line Current table."
INDEX { ifIndex }
::= { sonetFarEndLineCurrentTable 1 }

SonetFarEndLineCurrentEntry ::=
 SEQUENCE {
 sonetFarEndLineCurrentESs PerfCurrentCount,
 sonetFarEndLineCurrentSESs PerfCurrentCount,
 sonetFarEndLineCurrentCVs PerfCurrentCount,
 }
sonetFarEndLineCurrentUASs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Far End Unavailable Seconds encountered by a SONET/SDH interface in the current 15 minute interval."
::= { sonetFarEndLineCurrentEntry 1 }

sonetFarEndLineCurrentESs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Far End Errored Seconds encountered by a SONET/SDH interface in the current 15 minute interval."
::= { sonetFarEndLineCurrentEntry 2 }

sonetFarEndLineCurrentSESs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Far End Severely Errored Seconds encountered by a SONET/SDH Medium/Section/Line interface in the current 15 minute interval."
::= { sonetFarEndLineCurrentEntry 3 }

sonetFarEndLineCurrentCVs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Far End Coding Violations reported via the far end block error count encountered by a SONET/SDH Medium/Section/Line interface in the current 15 minute interval."
::= { sonetFarEndLineCurrentEntry 3 }

sonetFarEndLineCurrentUASs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Far End Unavailable Seconds encountered by a SONET/SDH interface in the current 15 minute interval."
::= { sonetFarEndLineCurrentEntry 1 }

Expires 4/19/1999
encountered by a
SONET/SDH Medium/Section/Line
interface in the current 15 minute interval."
 ::= { sonetFarEndLineCurrentEntry 4 }
-- The SONET/SDH Far End Line Interval Table

-- The SONET/SDH Far End Line Interval Table
-- contains various statistics
-- collected by each system over a maximum
-- of the previous 24 hours of
-- operation. The past 24 hours may be broken into 96
-- completed 15 minute intervals.
-- A system is required to store at
-- least 4 completed 15 minute interval.
-- The default value is 32 intervals.

sonetFarEndLineIntervalTable OBJECT-TYPE
SYNTAX SEQUENCE OF SonetFarEndLineIntervalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The SONET/SDH Far End Line Interval table."
 ::= { sonetFarEndLine 2 }

SonetFarEndLineIntervalEntry OBJECT-TYPE
SYNTAX SonetFarEndLineIntervalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the SONET/SDH Far End Line Interval table."
INDEX { ifIndex,
 sonetFarEndLineIntervalNumber }
 ::= { sonetFarEndLineIntervalTable 1 }

SonetFarEndLineIntervalEntry ::= SEQUENCE {
 sonetFarEndLineIntervalNumber Integer32,
 sonetFarEndLineIntervalESs PerfIntervalCount,
 sonetFarEndLineIntervalSESs PerfIntervalCount,
 sonetFarEndLineIntervalCVs PerfIntervalCount,
 sonetFarEndLineIntervalUASs PerfIntervalCount,
 sonetFarEndLineIntervalValidData TruthValue

}

sonetFarEndLineIntervalNumber OBJECT-TYPE
SYNTAX Integer32 (1..96)
MAX-ACCESS not-accessible

Expires 4/19/1999
"A number between 1 and 96, which identifies the interval for which the set of statistics is available. The interval identified by 1 is the most recently completed 15 minute interval, and the interval identified by N is the interval immediately preceding the one identified by N-1."

::= { sonetFarEndLineIntervalEntry 1 }

sonetFarEndLineIntervalESs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Far End Errored Seconds encountered by a SONET/SDH Line interface in a particular 15-minute interval in the past 24 hours."

::= { sonetFarEndLineIntervalEntry 2 }

sonetFarEndLineIntervalSESs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Far End Severely Errored Seconds encountered by a SONET/SDH Line interface in a particular 15-minute interval in the past 24 hours."

::= { sonetFarEndLineIntervalEntry 3 }

sonetFarEndLineIntervalCVs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Far End Coding Violations reported via the far end block error count encountered by a
SONET/SDH Line interface in a particular 15-minute interval in the past 24 hours.
::= { sonetFarEndLineIntervalEntry 4 }

sonetFarEndLineIntervalUASs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Far End Unavailable Seconds encountered by a SONET/SDH Line interface in a particular 15-minute interval in the past 24 hours."
::= { sonetFarEndLineIntervalEntry 5 }

sonetFarEndLineIntervalValidData OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This variable indicates if the data for this interval is valid."
::= { sonetFarEndLineIntervalEntry 6 }
-- the SONET/SDH Path group

-- this group consists of 2 tables:
-- - the SONET/SDH Path Current Table
-- - the SONET/SDH Path Interval Table

-- the SONET/SDH Path Current Table

-- The SONET/SDH Path
-- current table contains various statistics
-- being collected for the current 15 minute interval.

sonetPathCurrentTable OBJECT-TYPE
SYNTAX SEQUENCE OF SonetPathCurrentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The SONET/SDH Path Current table."
 ::= { sonetPath 1 }

sonetPathCurrentEntry OBJECT-TYPE
SYNTAX SonetPathCurrentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the SONET/SDH Path Current table."
INDEX { ifIndex }
 ::= { sonetPathCurrentTable 1 }

SonetPathCurrentEntry ::= SEQUENCE {
 sonetPathCurrentWidth INTEGER,
 sonetPathCurrentStatus Integer32,
 sonetPathCurrentESs PerfCurrentCount,
 sonetPathCurrentSESs PerfCurrentCount,
 sonetPathCurrentCVs PerfCurrentCount,
 sonetPathCurrentUASs PerfCurrentCount
}

sonetPathCurrentWidth OBJECT-TYPE
SYNTAX INTEGER {
 sts1(1),
 sts3cSTM1(2),

Expires 4/19/1999
sts12cSTM4(3),
sts24c(4),
sts48cSTM16(5)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"A value that indicates the type of the SONET/SDH Path. For SONET, the assigned types are the STS-Nc SPEs, where N = 1, 3, 12, 24, and 48. STS-1 is equal to 51.84 Mbps. For SDH, the assigned types are the STM-Nc VCs, where N = 1, 4, and 16."
::= { sonetPathCurrentEntry 1 }

sonetPathCurrentStatus OBJECT-TYPE
SYNTAX Integer32 (1..62)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This variable indicates the status of the interface. The sonetPathCurrentStatus is a bit map represented as a sum, therefore, it can represent multiple defects simultaneously. The sonetPathNoDefect should be set if and only if no other flag is set.

The various bit positions are:
1 sonetPathNoDefect
2 sonetPathSTSLOP
4 sonetPathSTSAIS
8 sonetPathSTSRDI
16 sonetPathUnequipped
32 sonetPathSignalLabelMismatch"
::= { sonetPathCurrentEntry 2 }

sonetPathCurrentESs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Errored
Seconds encountered by a SONET/SDH
Path in the current 15 minute interval."
 ::= { sonetPathCurrentEntry 3 }

sonetPathCurrentSESs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of
Severely Errored Seconds
encountered by a SONET/SDH Path in the current 15
minute
interval."
 ::= { sonetPathCurrentEntry 4 }

sonetPathCurrentCVs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Coding
Violations encountered by a
SONET/SDH Path in the current 15 minute interval."
 ::= { sonetPathCurrentEntry 5 }

sonetPathCurrentUASs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of
Unavailable Seconds
encountered by a Path in the current
15 minute interval."
 ::= { sonetPathCurrentEntry 6 }
The SONET/SDH Path Interval Table

- Contains various statistics collected by each system over a maximum of the previous 24 hours of operation. The past 24 hours may be broken into 96 completed 15 minute intervals.
- An system is required to store at least 4 completed 15 minute intervals.
- The default value is 32 intervals.

sonetPathIntervalTable OBJECT-TYPE
- **SYNTAX** SEQUENCE OF SonetPathIntervalEntry
- **MAX-ACCESS** not-accessible
- **STATUS** current
- **DESCRIPTION**
 "The SONET/SDH Path Interval table."

```
 ::= { sonetPath 2 }
```

sonetPathIntervalEntry OBJECT-TYPE
- **SYNTAX** SonetPathIntervalEntry
- **MAX-ACCESS** not-accessible
- **STATUS** current
- **DESCRIPTION**
 "An entry in the SONET/SDH Path Interval table."
- **INDEX** { ifIndex, sonetPathIntervalNumber }

```
 ::= { sonetPathIntervalTable 1 }
```

SonetPathIntervalEntry ::=
- **SEQUENCE** {
 - **sonetPathIntervalNumber** Integer32,
 - **sonetPathIntervalESs** PerfIntervalCount,
 - **sonetPathIntervalSESs** PerfIntervalCount,
 - **sonetPathIntervalCVs** PerfIntervalCount,
 - **sonetPathIntervalUASs** PerfIntervalCount,
 - **sonetPathIntervalValidData** TruthValue
}

sonetPathIntervalNumber OBJECT-TYPE
- **SYNTAX** Integer32 (1..96)
- **MAX-ACCESS** not-accessible
A number between 1 and 96, which identifies the interval for which the set of statistics is available. The interval identified by 1 is the most recently completed 15 minute interval, and the interval identified by N is the interval immediately preceding the one identified by N-1.

::= { sonetPathIntervalEntry 1 }

```plaintext
sonetPathIntervalESs OBJECT-TYPE
SYNTAX  PerfIntervalCount
MAX-ACCESS  read-only
STATUS  current
DESCRIPTION
"The counter associated with the number of Errored Seconds encountered by a SONET/SDH Path in a particular 15-minute interval in the past 24 hours."
::= { sonetPathIntervalEntry 2 }
```

```plaintext
sonetPathIntervalSESs OBJECT-TYPE
SYNTAX  PerfIntervalCount
MAX-ACCESS  read-only
STATUS  current
DESCRIPTION
"The counter associated with the number of Severely Errored Seconds encountered by a SONET/SDH Path in a particular 15-minute interval in the past 24 hours."
::= { sonetPathIntervalEntry 3 }
```

```plaintext
sonetPathIntervalCVs OBJECT-TYPE
SYNTAX  PerfIntervalCount
MAX-ACCESS  read-only
STATUS  current
DESCRIPTION
"The counter associated with the number of Coding Violations encountered by a SONET/SDH Path in a particular 15-minute interval in the past 24 hours."
```
::= { sonetPathIntervalEntry 4 }

sonetPathIntervalUASs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Unavailable Seconds encountered by a Path in a particular 15-minute interval in the past 24 hours."
::= { sonetPathIntervalEntry 5 }

sonetPathIntervalValidData OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This variable indicates if the data for this interval is valid."
::= { sonetPathIntervalEntry 6 }
-- The SONET/SDH Far End Path group

-- This group consists of two tables:
-- - SONET/SDH Far End Path Current Table
-- - SONET/SDH Far End Path Interval Table

-- The SONET/SDH Far End Path Current Table

-- The SONET/SDH Far End Path Current table
-- contains various statistics
-- being collected for the current 15 minute interval.
-- The statistics are collected from
-- the far end block error code
-- (FEBE) within the G1 byte of the Path Overhead.
-- The definitions are the same as described for
-- the near-end information.

sonetFarEndPathCurrentTable OBJECT-TYPE
SYNTAX SEQUENCE OF SonetFarEndPathCurrentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The SONET/SDH Far End Path Current table."
 ::= { sonetFarEndPath 1 }

sonetFarEndPathCurrentEntry OBJECT-TYPE
SYNTAX SonetFarEndPathCurrentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the SONET/SDH Far End Path Current table."
INDEX { ifIndex }
 ::= { sonetFarEndPathCurrentTable 1 }

SonetFarEndPathCurrentEntry ::=
SEQUENCE {
 sonetFarEndPathCurrentESs PerfCurrentCount,
 sonetFarEndPathCurrentSESs PerfCurrentCount,
 sonetFarEndPathCurrentCVs PerfCurrentCount,
 sonetFarEndPathCurrentUASs PerfCurrentCount
}

sonetFarEndPathCurrentESs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Far End Errored Seconds encountered by a SONET/SDH interface in the current 15 minute interval."
::= { sonetFarEndPathCurrentEntry 1 }

sonetFarEndPathCurrentSESs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Far End Severely Errored Seconds encountered by a SONET/SDH Path interface in the current 15 minute interval."
::= { sonetFarEndPathCurrentEntry 2 }

sonetFarEndPathCurrentCVs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Far End Coding Violations reported via the far end block error count encountered by a SONET/SDH Path interface in the current 15 minute interval."
::= { sonetFarEndPathCurrentEntry 3 }

sonetFarEndPathCurrentUASs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Far End Unavailable Seconds encountered by a SONET/SDH Path interface in the current 15 minute interval."
::= { sonetFarEndPathCurrentEntry 4 }
-- The SONET/SDH Far End Path Interval Table

-- The SONET/SDH Far End Path Interval Table
-- contains various statistics
-- collected by each system over a maximum
-- of the previous 24 hours of
-- operation. The past 24 hours may be broken into 96
-- completed 15 minute intervals.
-- A system is required to store at
-- least 4 completed 15 minute interval.
-- The default value is 32 intervals.

sonetFarEndPathIntervalTable OBJECT-TYPE
SYNTAX SEQUENCE OF SonetFarEndPathIntervalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The SONET/SDH Far End Path Interval table."
::= { sonetFarEndPath 2 }

sonetFarEndPathIntervalEntry OBJECT-TYPE
SYNTAX SonetFarEndPathIntervalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "An entry in the SONET/SDH Far
 End Path Interval table."
INDEX { ifIndex,
 sonetFarEndPathIntervalNumber }
 ::= { sonetFarEndPathIntervalTable 1 }

SonetFarEndPathIntervalEntry ::=
SEQUENCE {
 sonetFarEndPathIntervalNumber Integer32,
 sonetFarEndPathIntervalESs PerfIntervalCount,
 sonetFarEndPathIntervalSESs PerfIntervalCount,
 sonetFarEndPathIntervalCVs PerfIntervalCount,
 sonetFarEndPathIntervalUASs PerfIntervalCount,
 sonetFarEndPathIntervalValidData TruthValue
}

sonetFarEndPathIntervalNumber OBJECT-TYPE
SYNTAX Integer32 (1..96)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A number between 1 and 96, which identifies the interval for which the set of statistics is available. The interval identified by 1 is the most recently completed 15 minute interval, and the interval identified by N is the interval immediately preceding the one identified by N-1."

::= { sonetFarEndPathIntervalEntry 1 }

sonetFarEndPathIntervalESs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Far End Errored Seconds encountered by a SONET/SDH Path interface in a particular 15-minute interval in the past 24 hours."

::= { sonetFarEndPathIntervalEntry 2 }

sonetFarEndPathIntervalSESs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Far End Severely Errored Seconds encountered by a SONET/SDH Path interface in a particular 15-minute interval in the past 24 hours."

::= { sonetFarEndPathIntervalEntry 3 }

sonetFarEndPathIntervalCVs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Far End Coding Violations reported via the far end block error count encountered by a SONET/SDH Path interface
in a particular 15-minute interval
in the past 24 hours."
::= { sonetFarEndPathIntervalEntry 4 }

sonetFarEndPathIntervalUASs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of
Far End Unavailable Seconds
encountered by a
SONET/SDH Path interface in
a particular 15-minute interval
in the past 24 hours."
::= { sonetFarEndPathIntervalEntry 5 }

sonetFarEndPathIntervalValidData OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This variable indicates if the data for this
interval is valid."
::= { sonetFarEndPathIntervalEntry 6 }
the SONET/SDH Virtual Tributary group

this group consists of 2 tables:
-- the SONET/SDH VT Current Table
-- the SONET/SDH VT Interval Table

For SDH signals, virtual tributaries are called VCs instead of VTs

A VT1.5 = VC11
A VT2 = VC12
A VT3 = none
A VT6 = VC3

the SONET/SDH VT Current Table

The SONET/SDH VT current table contains various statistics being collected for the current 15 minute interval.

sonetVTCurrentTable OBJECT-TYPE
SYNTAX SEQUENCE OF SonetVTCurrentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The SONET/SDH VT Current table."
::= { sonetVT 1 }

sonetVTCurrentEntry OBJECT-TYPE
SYNTAX SonetVTCurrentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the SONET/SDH VT Current table."
INDEX { ifIndex }
::= { sonetVTCurrentTable 1 }

SonetVTCurrentEntry ::= SEQUENCE {
 sonetVTCurrentWidth INTEGER,
 sonetVTCurrentStatus Integer32,
 sonetVTCurrentESs PerfCurrentCount,
 sonetVTCurrentSESs PerfCurrentCount,
sonetVTCurrentCVs PerfCurrentCount,
sonetVTCurrentUASs PerfCurrentCount
}

sonetVTCurrentWidth OBJECT-TYPE
SYNTAX INTEGER {
 vtWidth15VC11(1),
 vtWidth2VC12(2),
 vtWidth3(3),
 vtWidth6VC2(4),
 vtWidth6c(5)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"A value that indicates the type of the SONET VT and SDH VC. Assigned widths are VT1.5/VC11, VT2/VC12, VT3, VT6/VC2, and VT6c."
 ::= { sonetVTCurrentEntry 1 }

sonetVTCurrentStatus OBJECT-TYPE
SYNTAX Integer32 (1..126)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This variable indicates the status of the interface. The sonetVTCurrentStatus is a bit map represented as a sum, therefore, it can represent multiple defects and failures simultaneously. The sonetVTNoDefect should be set if and only if no other flag is set.

The various bit positions are:
1 sonetVTNoDefect
2 sonetVTLOP
4 sonetVTPathAIS
8 sonetVTPathRDI
16 sonetVTPathRFI
32 sonetVTUnequipped
64 sonetVTSignalLabelMismatch"
::= { sonetVTCurrentEntry 2 }

sonetVTCurrentESs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Errored Seconds encountered by a SONET/SDH VT in the current 15 minute interval."
::= { sonetVTCurrentEntry 3 }

sonetVTCurrentSESs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Severely Errored Seconds encountered by a SONET/SDH VT in the current 15 minute interval."
::= { sonetVTCurrentEntry 4 }

sonetVTCurrentCVs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Coding Violations encountered by a SONET/SDH VT in the current 15 minute interval."
::= { sonetVTCurrentEntry 5 }

sonetVTCurrentUASs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Unavailable Seconds encountered by a VT in the current 15 minute interval."
::= { sonetVTCurrentEntry 6 }

Expires 4/19/1999
The SONET/SDH VT Interval Table

contains various statistics
collected by each system over a maximum
of the previous 24 hours of
operation. The past 24 hours may be broken into 96
completed 15 minute intervals.
A system is required to store at
least 4 completed 15 minute interval.
The default value is 32 intervals.

sonetVTIntervalTable OBJECT-TYPE
SYNTAX SEQUENCE OF SonetVTIntervalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The SONET/SDH VT Interval table."
::= { sonetVT 2 }

sonetVTIntervalEntry OBJECT-TYPE
SYNTAX SonetVTIntervalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the SONET/SDH VT Interval table."
INDEX { ifIndex,
 sonetVTIntervalNumber }
::= { sonetVTIntervalTable 1 }

SonetVTIntervalEntry ::=
SEQUENCE {
 sonetVTIntervalNumber Integer32,
 sonetVTIntervalESs PerfIntervalCount,
 sonetVTIntervalSESs PerfIntervalCount,
 sonetVTIntervalCVs PerfIntervalCount,
 sonetVTIntervalUASs PerfIntervalCount,
 sonetVTIntervalValidData TruthValue
}

sonetVTIntervalNumber OBJECT-TYPE
SYNTAX Integer32 (1..96)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A number between 1 and 96, which identifies the interval for which the set of statistics is available. The interval identified by 1 is the most recently completed 15 minute interval, and the interval identified by N is the interval immediately preceding the one identified by N-1."

::= { sonetVTIntervalEntry 1 }

sonetVTIntervalES OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Errored Seconds encountered by a SONET/SDH VT in a particular 15-minute interval in the past 24 hours."

::= { sonetVTIntervalEntry 2 }

sonetVTIntervalSES OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Severely Errored Seconds encountered by a SONET/SDH VT in a particular 15-minute interval in the past 24 hours."

::= { sonetVTIntervalEntry 3 }

sonetVTIntervalCVs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Coding Violations encountered by a SONET/SDH VT in a particular 15-minute interval in the past 24 hours."

::= { sonetVTIntervalEntry 4 }

sonetVTIntervalUASs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The counter associated with the number of
 Unavailable Seconds
 encountered by a VT in a particular 15-minute interval
 in the past 24 hours."
 ::= { sonetVTIntervalEntry 5 }

sonetVTIntervalValidData OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This variable indicates if the data for this
 interval is valid."
 ::= { sonetVTIntervalEntry 6 }
-- The SONET/SDH Far End VT group

-- This group consists of two tables:
-- SONET/SDH Far End VT Current Table
-- SONET/SDH Far End VT Interval Table

-- The SONET/SDH Far End VT Current

-- The SONET/SDH Far End VT Current table
-- contains various statistics
-- being collected for the current 15 minute interval.
-- The statistics are collected from
-- the far end block error code
-- (FEBE) within the G1 byte of the VT Overhead.
-- The definitions are the same as described for
-- the near-end information.

sonetFarEndVTCurrentTable OBJECT-TYPE
SYNTAX SEQUENCE OF SonetFarEndVTCurrentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The SONET/SDH Far End VT Current table."
::= { sonetFarEndVT 1 }

sonetFarEndVTCurrentEntry OBJECT-TYPE
SYNTAX SonetFarEndVTCurrentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the SONET/SDH Far End VT Current table."
INDEX { ifIndex }
::= { sonetFarEndVTCurrentTable 1 }

SonetFarEndVTCurrentEntry ::= SEQUENCE {
 sonetFarEndVTCurrentESs PerfCurrentCount,
 sonetFarEndVTCurrentSESs PerfCurrentCount,
 sonetFarEndVTCurrentCVs PerfCurrentCount,
 sonetFarEndVTCurrentUASs PerfCurrentCount
}

sonetFarEndVTCurrentESs OBJECT-TYPE
Expires 4/19/1999
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of Far
End Errored Seconds encountered by a SONET/SDH
interface in the current 15 minute interval."
::= { sonetFarEndVTCurrentEntry 1 }

sonetFarEndVTCurrentSESs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of
Far End Severely Errored Seconds
encountered by a SONET/SDH VT interface
in the current 15 minute
interval."
::= { sonetFarEndVTCurrentEntry 2 }

sonetFarEndVTCurrentCVs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of
Far End Coding Violations reported via
the far end block error count
encountered by a
SONET/SDH VT interface
in the current 15 minute interval."
::= { sonetFarEndVTCurrentEntry 3 }

sonetFarEndVTCurrentUASs OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of
Far End Unavailable Seconds
encountered by a
SONET/SDH VT interface
in the current 15 minute interval."
::= { sonetFarEndVTCurrentEntry 4 }
-- The SONET/SDH Far End VT Interval Table
-- The SONET/SDH Far End VT Interval Table
contains various statistics
of the previous 24 hours of
operation. The past 24 hours may be broken into 96
completed 15 minute intervals.
A system is required to store at
least 4 completed 15 minute interval.
The default value is 32 intervals.

sonetFarEndVTIntervalTable OBJECT-TYPE
SYNTAX SEQUENCE OF SonetFarEndVTIntervalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The SONET/SDH Far End VT Interval table."
::= { sonetFarEndVT 2 }

sonetFarEndVTIntervalEntry OBJECT-TYPE
SYNTAX SonetFarEndVTIntervalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the SONET/SDH Far
End VT Interval table."
INDEX { ifIndex,
 sonetFarEndVTIntervalNumber }
::= { sonetFarEndVTIntervalTable 1 }

SonetFarEndVTIntervalEntry ::=
SEQUENCE {
 sonetFarEndVTIntervalNumber Integer32,
 sonetFarEndVTIntervalESs PerfIntervalCount,
 sonetFarEndVTIntervalSESs PerfIntervalCount,
 sonetFarEndVTIntervalCVs PerfIntervalCount,
 sonetFarEndVTIntervalUASs PerfIntervalCount,
 sonetFarEndVTIntervalValidData TruthValue
}

sonetFarEndVTIntervalNumber OBJECT-TYPE
SYNTAX Integer32 (1..96)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A number between 1 and 96, which identifies the
interval for which the set of statistics is available.
The interval identified by 1 is the most recently
completed 15 minute interval,
and the interval identified
by N is the interval immediately preceding the
one identified
by N-1."
 ::= { sonetFarEndVTIntervalEntry 1 }

sonetFarEndVTIntervalESs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of
Far End Errored Seconds encountered
by a SONET/SDH VT interface
in a particular 15-minute interval
in the past 24 hours."
 ::= { sonetFarEndVTIntervalEntry 2 }

sonetFarEndVTIntervalSESs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of
Far End Severely Errored Seconds
encountered by a SONET/SDH VT interface
in a particular 15-minute interval
in the past 24 hours."
 ::= { sonetFarEndVTIntervalEntry 3 }

sonetFarEndVTIntervalCVs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of
Far End Coding Violations reported via
the far end block error count
encountered by a
SONET/SDH VT interface in a
particular 15-minute interval
in the past 24 hours."
::= { sonetFarEndVTIntervalEntry 4 }

sonetFarEndVTIntervalUASs OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter associated with the number of
Far End Unavailable Seconds
encountered by a
SONET/SDH VT interface in a
particular 15-minute interval
in the past 24 hours."
::= { sonetFarEndVTIntervalEntry 5 }

sonetFarEndVTIntervalValidData OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This variable indicates if the data for this
interval is valid."
::= { sonetFarEndVTIntervalEntry 6 }
-- conformance information

sonetConformance OBJECT IDENTIFIER ::= { sonetMIB 4 }
sonetGroups OBJECT IDENTIFIER ::= { sonetConformance 1 }
sonetCompliances OBJECT IDENTIFIER ::= { sonetConformance 2 }

-- deprecated compliance statement

sonetCompliance MODULE-COMPLIANCE
 STATUS deprecated
 DESCRIPTION "The compliance statement for SONET/SDH interfaces."

MODULE -- this module
 MANDATORY-GROUPS { sonetMediumStuff, sonetSectionStuff }

GROUP sonetLineStuff
 DESCRIPTION "Implementation of this group is mandatory for all
 SONET/SDH systems that terminate SONET/SDH Lines,
 Paths or Virtual Tributaries."

GROUP sonetFarEndLineStuff
 DESCRIPTION "Implementation of this group is optional for all
 SONET/SDH systems that terminate SONET/SDH Lines,
 Paths or Virtual Tributaries, and that
 provide for a far end block error (FEBE)
 information at the SONET/SDH Line Layer."

GROUP sonetPathStuff
 DESCRIPTION "Implementation of this group is mandatory for all
 SONET/SDH systems that terminate SONET/SDH
 Paths or Virtual Tributaries."

OBJECT sonetPathCurrentWidth
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

GROUP sonetFarEndPathStuff
 DESCRIPTION "Implementation of this group is optional for all
SONET/SDH systems that terminate SONET/SDH Paths or Virtual Tributaries, and that process Far End information.

GROUP sonetVTStuff
DESCRIPTION
"Implementation of this group is mandatory for all SONET/SDH systems that terminate SONET/SDH Virtual Tributaries."

OBJECT sonetVTCurrentWidth
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

GROUP sonetFarEndVTStuff
DESCRIPTION
"Implementation of this group is optional for all SONET/SDH systems that terminate the SONET/SDH floating Virtual Tributaries, and that process Far End information."

::= { sonetCompliances 1 }

-- current compliance statements

sonetCompliance2 MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for SONET/SDH interfaces."

MODULE -- this module
MANDATORY-GROUPS { sonetMediumStuff2, sonetSectionStuff2 }

OBJECT sonetMediumType
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT sonetMediumLineCoding
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
OBJECT sonetMediumLineType
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT sonetMediumCircuitIdentifier
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT sonetMediumLoopbackConfig
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

OBJECT sonetSESthresholdSet
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required, and only one of the enumerated values need be supported."

GROUP sonetLineStuff2
DESCRIPTION
"Implementation of this group is mandatory for all SONET/SDH systems that terminate SONET/SDH Lines, Paths or Virtual Tributaries."

GROUP sonetFarEndLineStuff2
DESCRIPTION
"Implementation of this group is optional for all SONET/SDH systems that terminate SONET/SDH Lines, Paths or Virtual Tributaries, and that provide for a far end block error (FEBE) information at the SONET/SDH Line Layer."

GROUP sonetPathStuff2
DESCRIPTION
"Implementation of this group is mandatory for all SONET/SDH systems that terminate SONET/SDH Paths or Virtual Tributaries."

OBJECT sonetPathCurrentWidth
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."
GROUP sonetFarEndPathStuff2
DESCRIPTION
"Implementation of this group is optional for all
SONET/SDH systems that terminate SONET/SDH
Paths or Virtual Tributaries, and that process
Far End information."

GROUP sonetVTStuff2
DESCRIPTION
"Implementation of this group is mandatory for all
SONET/SDH systems that terminate SONET/SDH Virtual
Tributaries."

OBJECT sonetVTCurrentWidth
MIN-ACCESS read-only
DESCRIPTION
"Write access is not required."

GROUP sonetFarEndVTStuff2
DESCRIPTION
"Implementation of this group is optional for all
SONET/SDH systems that terminate the SONET/SDH
floating Virtual Tributaries, and that process
Far End information."

::= { sonetCompliances 2 }

-- units of conformance

-- deprecated groups

sonetMediumStuff OBJECT-GROUP
OBJECTS { sonetMediumType,
 sonetMediumTimeElapsed,
 sonetMediumValidIntervals,
 sonetMediumLineCoding,
 sonetMediumLineType,
 sonetMediumCircuitIdentifier }
STATUS deprecated
DESCRIPTION
"A collection of objects providing configuration
information applicable to all SONET/SDH interfaces."
::= { sonetGroups 1 }

sonetSectionStuff OBJECT-GROUP
OBJECTS { sonetSectionCurrentStatus,
sonetSectionCurrentESs,
sonetSectionCurrentSESs,
sonetSectionCurrentSEFSs,
sonetSectionCurrentCVs,
sonetSectionIntervalESs,
sonetSectionIntervalSESs,
sonetSectionIntervalSEFSs,
sonetSectionIntervalCVs }

STATUS deprecated
DESCRIPTION
"A collection of objects providing information specific to SONET/SDH Section interfaces."
::= { sonetGroups 2 }

sonetLineStuff OBJECT-GROUP
OBJECTS { sonetLineCurrentStatus,
sonetLineCurrentESs,
sonetLineCurrentSESs,
sonetLineCurrentCVs,
sonetLineCurrentUASs,
sonetLineIntervalESs,
sonetLineIntervalSESs,
sonetLineIntervalCVs,
sonetLineIntervalUASs }

STATUS deprecated
DESCRIPTION
"A collection of objects providing information specific to SONET/SDH Line interfaces."
::= { sonetGroups 3 }

sonetFarEndLineStuff OBJECT-GROUP
OBJECTS { sonetFarEndLineCurrentESs,
sonetFarEndLineCurrentSESs,
sonetFarEndLineCurrentCVs,
sonetFarEndLineCurrentUASs,
sonetFarEndLineIntervalESs,
sonetFarEndLineIntervalSESs,
sonetFarEndLineIntervalCVs,
sonetFarEndLineIntervalUASs }

STATUS deprecated
DESCRIPTION
"A collection of objects providing information specific to SONET/SDH Line interfaces,
and maintaining Line Far End information."
::= { sonetGroups 4 }

sonetPathStuff OBJECT-GROUP
OBJECTS { sonetPathCurrentWidth,
 sonetPathCurrentStatus,
 sonetPathCurrentESs,
 sonetPathCurrentSESs,
 sonetPathCurrentCVs,
 sonetPathCurrentUASs,
 sonetPathIntervalESs,
 sonetPathIntervalSESs,
 sonetPathIntervalCVs,
 sonetPathIntervalUASs }
STATUS deprecated
DESCRIPTION
"A collection of objects providing information
specific to SONET/SDH Path interfaces."
::= { sonetGroups 5 }

sonetFarEndPathStuff OBJECT-GROUP
OBJECTS { sonetFarEndPathCurrentESs,
 sonetFarEndPathCurrentSESs,
 sonetFarEndPathCurrentCVs,
 sonetFarEndPathCurrentUASs,
 sonetFarEndPathIntervalESs,
 sonetFarEndPathIntervalSESs,
 sonetFarEndPathIntervalCVs,
 sonetFarEndPathIntervalUASs }
STATUS deprecated
DESCRIPTION
"A collection of objects providing information
specific to SONET/SDH Path interfaces,
and maintaining Path Far End information."
::= { sonetGroups 6 }

sonetVTStuff OBJECT-GROUP
OBJECTS { sonetVTCurrentWidth,
 sonetVTCurrentStatus,
 sonetVTCurrentESs,
 sonetVTCurrentSESs,
 sonetVTCurrentCVs,
 sonetVTCurrentUASs,
 sonetVTIntervalESs,
 sonetVTIntervalSESs,
sonetVTIntervalCVs,
sonetVTIntervalUASs }

STATUS deprecated
DESCRIPTION
"A collection of objects providing information specific to SONET/SDH VT interfaces."
::= { sonetGroups 7 }

sonetFarEndVTStuff OBJECT-GROUP
OBJECTS { sonetFarEndVTCurrentESs,
sonetFarEndVTCurrentSESs,
sonetFarEndVTCurrentCVs,
sonetFarEndVTCurrentUASs,
sonetFarEndVTIntervalESs,
sonetFarEndVTIntervalSESs,
sonetFarEndVTIntervalCVs,
sonetFarEndVTIntervalUASs }

STATUS deprecated
DESCRIPTION
"A collection of objects providing information specific to SONET/SDH VT interfaces, and maintaining VT Far End information."
::= { sonetGroups 8 }

-- current groups

sonetMediumStuff2 OBJECT-GROUP
OBJECTS { sonetMediumType,
sonetMediumTimeElapsed,
sonetMediumValidIntervals,
sonetMediumLineCoding,
sonetMediumLineType,
sonetMediumCircuitIdentifier,
sonetMediumInvalidIntervals,
sonetMediumLoopbackConfig,
sonetSESthresholdSet }

STATUS current
DESCRIPTION
"A collection of objects providing configuration information applicable to all SONET/SDH interfaces."
::= { sonetGroups 9 }

sonetSectionStuff2 OBJECT-GROUP
OBJECTS { sonetSectionCurrentStatus,
sonetSectionCurrentESs,
sonetSectionCurrentSESs,
sonetSectionCurrentSEFSs,
sonetSectionCurrentCVs,
sonetSectionIntervalESs,
sonetSectionIntervalSESs,
sonetSectionIntervalSEFSs,
sonetSectionIntervalCVs,
sonetSectionIntervalValidData }

STATUS current
DESCRIPTION
"A collection of objects providing information
specific to SONET/SDH Section interfaces."
 ::= { sonetGroups 10 }

sonetLineStuff2 OBJECT-GROUP
OBJECTS { sonetLineCurrentStatus,
sonetLineCurrentESs,
sonetLineCurrentSESs,
sonetLineCurrentCVs,
sonetLineCurrentUASs,
sonetLineIntervalESs,
sonetLineIntervalSESs,
sonetLineIntervalCVs,
sonetLineIntervalUASs,
sonetLineIntervalValidData }

STATUS current
DESCRIPTION
"A collection of objects providing information
specific to SONET/SDH Line interfaces."
 ::= { sonetGroups 11 }

sonetPathStuff2 OBJECT-GROUP
OBJECTS { sonetPathCurrentWidth,
sonetPathCurrentStatus,
sonetPathCurrentESs,
sonetPathCurrentSESs,
sonetPathCurrentCVs,
sonetPathCurrentUASs,
sonetPathIntervalESs,
sonetPathIntervalSESs,
sonetPathIntervalCVs,
sonetPathIntervalUASs,
sonetPathIntervalValidData }

STATUS current
DESCRIPTION
"A collection of objects providing information specific to SONET/SDH Path interfaces."
 ::= { sonetGroups 12 }

sonetVTStuff2 OBJECT-GROUP
OBJECTS { sonetVTCurrentWidth, sonetVTCurrentStatus, sonetVTCurrentESs, sonetVTCurrentSESs, sonetVTCurrentCVs, sonetVTCurrentUASs, sonetVTIntervalESs, sonetVTIntervalSESs, sonetVTIntervalCVs, sonetVTIntervalUASs, sonetVTIntervalValidData }
STATUS current

DESCRIPTION
"A collection of objects providing information specific to SONET/SDH VT interfaces."
 ::= { sonetGroups 13 }

sonetFarEndLineStuff2 OBJECT-GROUP
OBJECTS { sonetFarEndLineCurrentESs, sonetFarEndLineCurrentSESs, sonetFarEndLineCurrentCVs, sonetFarEndLineCurrentUASs, sonetFarEndLineIntervalESs, sonetFarEndLineIntervalSESs, sonetFarEndLineIntervalCVs, sonetFarEndLineIntervalUASs, sonetFarEndLineIntervalValidData }
STATUS current

DESCRIPTION
"A collection of objects providing information specific to SONET/SDH Line interfaces, and maintaining Line Far End information."
 ::= { sonetGroups 14 }

sonetFarEndPathStuff2 OBJECT-GROUP
OBJECTS { sonetFarEndPathCurrentESs, sonetFarEndPathCurrentSESs, sonetFarEndPathCurrentCVs, sonetFarEndPathCurrentUASs, ...
sonetFarEndPathIntervalESs,
sonetFarEndPathIntervalSESs,
sonetFarEndPathIntervalCVs,
sonetFarEndPathIntervalUASs,
sonetFarEndPathIntervalValidData }

STATUS current
DESCRIPTION
"A collection of objects providing information specific to SONET/SDH Path interfaces, and maintaining Path Far End information."

::= { sonetGroups 15 }

sonetFarEndVTStuff2 OBJECT-GROUP
OBJECTS {
sonetFarEndVTCurrentESs,
sonetFarEndVTCurrentSESs,
sonetFarEndVTCurrentCVs,
sonetFarEndVTCurrentUASs,
sonetFarEndVTIntervalESs,
sonetFarEndVTIntervalSESs,
sonetFarEndVTIntervalCVs,
sonetFarEndVTIntervalUASs,
sonetFarEndVTIntervalValidData }

STATUS current
DESCRIPTION
"A collection of objects providing information specific to SONET/SDH VT interfaces, and maintaining VT Far End information."

::= { sonetGroups 16 }

END
6. Acknowledgments

This specification is a product of the AToM MIB Working Group. The author would like to acknowledge Mike Heard for his many valuable contributions to this memo.

7. Security Considerations

There are a number of management objects defined in this MIB that have a MAX-ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations.

The managed objects in this MIB contain sensitive information since, collectively, they allow influencing of interfaces in SONET/SDH equipment or networks and provide information of their configuration.

It is thus important to control even GET access to these objects and possibly to even encrypt the values of these object when sending them over the network via SNMP. Not all versions of SNMP provide features for such a secure environment.

SNMPv1 by itself is not a secure environment. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB.

It is recommended that the implementers consider the security features as provided by the SNMPv3 framework. Specifically, the use of the User-based Security Model RFC 2274 [12] and the View-based Access Control Model RFC 2275 [15] is recommended.

It is then a customer/user responsibility to ensure that the SNMP entity giving access to an instance of this MIB, is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.
8. References

9. Author’s Address

Kaj Tesink
Bellcore
331 Newman Springs Road
P.O. Box 7020
Red Bank, NJ 07701-7020

Phone: (732) 758-5254

EMail: kaj@bellcore.com
10. Intellectual Property

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF’s procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may be required to practice this standard. Please address the information to the IETF Executive Director.
11. Full Copyright Statement

Copyright (C) The Internet Society (1998). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Appendix A: The delay-line approach to statistics collection.

According to ANSI T1.231 unavailable time begins at the onset of 10 contiguous severely errored seconds -- that is, unavailable time starts with the first of the 10 contiguous SESs -- and while an interface is deemed unavailable all counters for that interface are frozen except for the UAS count. Since changes in the signal state lag the data to which they apply by 10 seconds, an implementation which wishes to avoid making retroactive adjustments to the counts must pass the the one-second statistics through a 10-second delay line prior to updating any counters. That can be done by performing the following steps at the end of each one second interval.

i) Read near/far end line and path CV counts and alarm status flags from the hardware.

ii) Accumulate the CV counts for the preceding second and compare them to the ES and SES threshold for the layer in question. Update the signal state and shift the one-second CV counts and ES/SES flags into the 10-element delay line. Note that far-end one-second statistics are to be flagged as "absent" during any second in which there is an incoming defect at the layer in question or at any lower layer.

iii) Update the current interval statistics using the signal state from the previous update cycle and the one-second CV counts and ES/SES flags shifted out of the 10-element delay line.

This procedure guarantees that the statistical counters will be correctly updated at all times, although they lag real time by 10 seconds. It is illustrated in the figure below. At the end of each 15 minutes interval the current interval counts are transferred to the most recent interval entry and each interval is shifted up by one position, with the oldest being discarded if necessary in order to make room. The current interval counts then start over from zero. Note, however, that the signal state calculation does not start anew at each interval boundary; rather, signal state information is retained across interval boundaries.
READ COUNTERS & STATUS INFO FROM HARDWARE

<table>
<thead>
<tr>
<th>LOS OOF/ SECT</th>
<th>LINE</th>
<th>LINE</th>
<th>LINE</th>
<th>LINE</th>
<th>PATH</th>
<th>PATH</th>
<th>PATH</th>
<th>PATH</th>
<th>PATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOF</td>
<td>CV</td>
<td>AIS</td>
<td>CV</td>
<td>RDI</td>
<td>FEBE</td>
<td>AIS</td>
<td>LOP</td>
<td>CV</td>
<td>RDI</td>
</tr>
<tr>
<td>V</td>
</tr>
</tbody>
</table>

ACCUM ONE-SEC STATS, CHK ERR THRESHOLDS, & UPDT SIGNAL STATE

<table>
<thead>
<tr>
<th>SECTION</th>
<th>NEAR END/FAR END</th>
<th>NEAR END/FAR END</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>ES</td>
<td>SES</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ONE-SEC DELAY</th>
<th>ONE-SEC DELAY</th>
<th>ONE-SEC DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 OF 10)</td>
<td>(1 OF 10)</td>
<td>(1 OF 10)</td>
</tr>
<tr>
<td>CV</td>
<td>ES</td>
<td>SES</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ONE-SEC DELAY</th>
<th>ONE-SEC DELAY</th>
<th>ONE-SEC DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10 OF 10)</td>
<td>(10 OF 10)</td>
<td>(10 OF 10)</td>
</tr>
<tr>
<td>CV</td>
<td>ES</td>
<td>SES</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
</tbody>
</table>

UPDATE STATISTICS COUNTERS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>NEAR END/FAR END</th>
<th>NEAR END/FAR END</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>ES</td>
<td>EFS</td>
</tr>
</tbody>
</table>

Expires 4/19/1999
Note that if such a procedure is adopted there is no current interval data for the first ten seconds after a system comes up. noSuchInstance must be returned if a management station attempts to access the current interval counters during this time.

It is an implementation-specific matter whether an agent assumes that the initial state of the interface is available or unavailable.
Appendix B - RFC1595 SES interpretation

This appendix contains the values for x for the Section, Line, Path, and VT Layers as used in [22][30][32].

Value for x for SONET/SDH Section SES Definition

<table>
<thead>
<tr>
<th>Rate</th>
<th>x</th>
<th>Minimum Bit Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-1</td>
<td>9</td>
<td>$1.5 	imes 10^{-7}$</td>
</tr>
<tr>
<td>OC-3</td>
<td>16</td>
<td>$1 	imes 10^{-7}$</td>
</tr>
<tr>
<td>OC-9</td>
<td>47</td>
<td>$1 	imes 10^{-7}$</td>
</tr>
<tr>
<td>OC-12</td>
<td>63</td>
<td>$1 	imes 10^{-7}$</td>
</tr>
<tr>
<td>OC-18</td>
<td>94</td>
<td>$1 	imes 10^{-7}$</td>
</tr>
<tr>
<td>OC-24</td>
<td>125</td>
<td>$1 	imes 10^{-7}$</td>
</tr>
<tr>
<td>OC-36</td>
<td>187</td>
<td>$1 	imes 10^{-7}$</td>
</tr>
<tr>
<td>OC-48</td>
<td>249</td>
<td>$1 	imes 10^{-7}$</td>
</tr>
</tbody>
</table>

Value for x for SONET/SDH Line SES Definition

<table>
<thead>
<tr>
<th>Rate</th>
<th>x</th>
<th>Minimum Bit Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-1</td>
<td>12</td>
<td>$2 	imes 10^{-7}$</td>
</tr>
<tr>
<td>OC-3</td>
<td>32</td>
<td>$2 	imes 10^{-7}$</td>
</tr>
<tr>
<td>OC-9</td>
<td>47</td>
<td>$2 	imes 10^{-7}$</td>
</tr>
<tr>
<td>OC-12</td>
<td>124</td>
<td>$2 	imes 10^{-7}$</td>
</tr>
<tr>
<td>OC-18</td>
<td>186</td>
<td>$2 	imes 10^{-7}$</td>
</tr>
<tr>
<td>OC-24</td>
<td>248</td>
<td>$2 	imes 10^{-7}$</td>
</tr>
<tr>
<td>OC-36</td>
<td>370</td>
<td>$2 	imes 10^{-7}$</td>
</tr>
<tr>
<td>OC-48</td>
<td>494</td>
<td>$2 	imes 10^{-7}$</td>
</tr>
</tbody>
</table>

Value for x for SONET/SDH STS-Path SES Definition

<table>
<thead>
<tr>
<th>Rate</th>
<th>x</th>
<th>Minimum Bit Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS-1</td>
<td>9</td>
<td>$1.5 	imes 10^{-7}$</td>
</tr>
<tr>
<td>STS-3</td>
<td>16</td>
<td>$1 	imes 10^{-7}$</td>
</tr>
</tbody>
</table>
Value for x for SONET/SDH VT-Path SES Definition

<table>
<thead>
<tr>
<th>Rate</th>
<th>x</th>
<th>Minimum Bit Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT1.5</td>
<td>4</td>
<td>2 x 10^-6</td>
</tr>
<tr>
<td>VT2</td>
<td>6</td>
<td>2 x 10^-6</td>
</tr>
<tr>
<td>VT3</td>
<td>8</td>
<td>2 x 10^-6</td>
</tr>
<tr>
<td>VT6</td>
<td>14</td>
<td>2 x 10^-6</td>
</tr>
</tbody>
</table>
Table of Contents

1 Status of this Memo 1
2 Abstract .. 2
3 The SNMP Network Management Framework 3
4 Overview .. 5
4.1 Use of the ifTable 5
4.2 Use of ifTable for SONET/SDH Medium/Section/Line Layer .. 6
4.3 Use of ifTable for SONET/SDH Paths 7
4.4 Use of ifTable for SONET/SDH VTs/VCs 8
4.5 SONET/SDH Terminology 9
5 Object Definitions ... 19
6.1 The SONET/SDH Medium Group 23
6.2 The SONET/SDH Section Group 28
6.2.1 The SONET/SDH Section Current Group 28
6.2.2 The SONET/SDH Section Interval Group 31
6.3 The SONET/SDH Line Group 34
6.3.1 The SONET/SDH Line Current Group 34
6.3.2 The SONET/SDH Line Interval Group 37
6.4 The SONET/SDH Far End Line Group 40
6.4.1 The SONET/SDH Far End Line Current Group 40
6.4.2 The SONET/SDH Far End Line Interval Group 43
6.5 The SONET/SDH Path Group 46
6.5.1 The SONET/SDH Path Current Group 46
6.5.2 The SONET/SDH Path Interval Group 49
6.6 The SONET/SDH Far End Path Group 52
6.6.1 The SONET/SDH Far End Path Current Group 52
6.6.2 The SONET/SDH Far End Path Interval Group 54
6.7 The SONET/SDH Virtual Tributary Group 57
6.7.1 The SONET/SDH VT Current Group 57
6.7.2 The SONET/SDH VT Interval Group 60
6.8 The SONET/SDH Far End VT Group 63
6.8.1 The SONET/SDH Far End VT Current Group 63
6.8.2 The SONET/SDH Far End VT Interval Group 65
6.9 Conformance Information 68
6.10 Compliance Statements 68
6 Acknowledgments ... 78
7 Security Considerations 78
8 References ... 79
9 Author’s Address ... 83
10 Intellectual Property 84
11 Full Copyright Statement 85