Authentication, Authorization and Accounting Requirements for the Session Initiation Protocol

STATUS OF THIS MEMO

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress".

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

To view the list Internet-Draft Shadow Directories, see http://www.ietf.org/shadow.html.

Abstract

As SIP services are deployed on the Internet, there is a need for authentication, authorization and accounting of SIP sessions. This document sets out the basic requirements for this work.
# Table of Contents

1 Introduction ............................................. 4  
1.1 RADIUS .............................................. 4  
1.2 Terminology and Acronyms ............................ 5  
1.3 Requirements Language ............................... 5  
2 Requirements .......................................... 6  
2.1 Common Requirements ................................. 6  
2.1.1 Communication within the Same Domain ............ 6  
2.1.2 Communication between Different Domains ......... 6  
2.1.3 Discovery ........................................ 6  
2.1.4 Ability to Integrate Different Networks, Services and Users ......................... 6  
2.1.5 Updating SIP Server Entries ........................ 6  
2.1.6 SIP Session Changes ............................... 7  
2.1.7 Reliable Transfer of Protocol Messages .......... 7  
2.1.8 Call Setup Times .................................. 7  
2.1.9 Security .......................................... 7  
2.2 Authentication Requirements .......................... 7  
2.2.1 Authentication Based on SIP Requests ............. 7  
2.2.2 Flexible Authentication of SIP Requests .......... 8  
2.3 Authorization Requirements ........................... 8  
2.3.1 Ability to Authorize SIP Requests ................ 8  
2.3.2 Information Transfer ............................... 8  
2.3.3 User De-authorization ............................. 8  
2.3.4 User Re-authorization ............................. 9  
2.3.5 Support for Credit Control ......................... 9  
2.4 Accounting Requirements ............................. 9  
2.4.1 Separation of Accounting Information ............. 9  
2.4.2 Accounting Information Related to Session Progress ........................................ 10  
2.4.3 Accounting Information Not Related to Session Progress ...................................... 10  
2.4.4 Support for One-Time and Session-based Accounting Records .................................. 10  
2.4.5 Support for Accounting on Different Media Components ..................................... 10  
2.4.6 Configuration of Accounting Generation Parameters .......................... 10  
2.4.7 Support for Arbitrary Correlations ................ 10  
3 Scenarios .............................................. 11  
3.1 WLAN Roaming Using Third Party Service Providers .... 12
3.2 Conditional Authorization ................................ 13
4 Security Considerations ................................. 13
5 Acknowledgements ........................................ 13
6 Authors’ Addresses ....................................... 14
7 Normative References ................................. 14
8 Informative References ................................. 14
1 Introduction

The AAA working group is chartered to work on authentication, authorization and accounting solutions for the Internet. This work consists of a base protocol, applications, end-to-end security application and a general architecture for providing these services [3]. The AAA working group has specified applicability of AAA-based solutions for a number of protocols (e.g., AAA requirements for Mobile IP [4]).

SIP is a signalling protocol for creating, modifying and terminating different types sessions such as Internet phone calls, multimedia distribution and multimedia conferences [1]. SIP sessions have needs for session authentication, authorization and accounting (AAA.)

In order to authenticate and authorize users, it is typically more convenient for SIP entities to communicate with a AAA sever than to attempt to store user credentials and profiles locally. SIP entities use the SIP-AAA interface to access the AAA server.

This document provides requirements on for the interface between SIP entities and AAA servers. While accounting requirements are discussed, this document does not cover SIP charging or billing mechanisms.

One possible use of this document would be to create a AAA application for SIP. Any protocol meeting the requirements outlined by this document could be used. Possible candidates, among others, are Diameter [3] and XML-based protocols following the web-services model.

1.1 RADIUS

The main purpose of this document is to provide input to designers working on AAA applications using new protocols such as Diameter and XML-based protocols. Nevertheless, a few, limited RADIUS [5] extensions may meet some of the requirements in this document (for instance, some of the authentication requirements). We expect that while RADIUS with these limited extensions will meet particular functional requirements, it will not meet other requirements that are important. The following are some requirements that are not expected to be met by RADIUS:

1. Section 2.1.3: RADIUS does not support a discovery feature.

2. Section 2.1.7: RADIUS does not support reliable message delivery.
The following list contains the requirements that can be met by RADIUS or RADIUS extensions.

1. **Section 2.1.2**: Communication between domains does not scale well in RADIUS. As a result, inter-domain communications are typically handled using a proxy architecture [6].

2. **Section 2.1.5**: RADIUS clients would need to support Dynamic Authorization [7].

3. **Section 2.1.9**: RADIUS clients would need to rely on a lower-layer security protocol, such as IPSec, to perform mutual authentication.

4. **Section 2.3.3**: RADIUS clients would need to support Dynamic Authorization [7].

5. **Section 2.3.4**: RADIUS clients would need to support Dynamic Authorization [7].

### 1.2 Terminology and Acronyms

**AAA**: Authentication, Authorization and Accounting

Accounting: The collection of resource consumption data for the purposes of capacity and trend analysis, cost allocation, auditing, and billing. Accounting management requires that resource consumption be measured, rated, assigned, and communicated between appropriate parties [8].

Accounting with credit control: The application checks the end user’s account for coverage for the requested service event charge prior to execution of that service event.

**Home AAA Server**: Server where user with which the user maintains an account relationship.

**SIP**: Session Initiation Protocol

**SIP proxies**: SIP proxies are nodes which forward SIP requests and responses as well as make policy decisions.

**UAC**: User Agent Client

**UAS**: User Agent Server

### 1.3 Requirements Language
In this document, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as described in RFC 2119 [2].

2 Requirements

In this section, we list the requirements. Protocol solutions are not required to fulfill requirements for services that they do not support. For example, a solution that provides authentication services but not accounting services does not need to fulfill the accounting requirements. It is expected that solutions do fulfill the general requirements plus the requirements for the specific services they are providing.

Section 2.1 lists general requirements, Section 2.2 lists requirements related to authentication, Section 2.3 lists requirements related to authorization and Section 2.4 lists requirements related to accounting.

2.1 Common Requirements

This section outlines general requirements on the SIP-AAA interface.

2.1.1 Communication within the Same Domain

The SIP-AAA interface MUST support communications between a SIP entity and a AAA server that belong to the same domain.

2.1.2 Communication between Different Domains

The SIP-AAA interface MUST support communications between a SIP entity in one domain and a AAA server in another domain. This MAY involve a proxy or a redirect server architecture between both entities.

2.1.3 Discovery

With the information contained in the SIP messages, the SIP-AAA interface SHOULD be able to deduce the particular AAA server that has to be queried.

2.1.4 Ability to Integrate Different Networks, Services and Users

The basic AAA architecture MUST be access independent. Service providers have to be able to provide AAA services for SIP, irrespective of access method or technology.

2.1.5 Updating SIP Server Entries
When required, the SIP-AAA interface MUST allow the AAA server to update the information that a SIP entity has about a user.

2.1.6 SIP Session Changes

The SIP-AAA interface MUST allow a SIP entity to inform the AAA server about changes in the SIP session that may affect the authorization, authentication or accounting for that SIP session.

2.1.7 Reliable Transfer of Protocol Messages

The SIP-AAA interface SHOULD provide a reliable transfer of AAA protocol messages between the SIP entity and the AAA server.

2.1.8 Call Setup Times

AAA SHOULD NOT unduly burden call setup times where appropriate. It may be reasonable to support some delay during registration, but delay during on-going sessions (especially real-time) are problematic.

2.1.9 Security

The SIP-AAA interface is a potential target of an attack. An eavesdropper may attempt to obtain confidential data by sniffing messages. Additionally, an active attacker may attempt to modify, insert, or replay messages between the SIP entity and the AAA server. Attackers may also attempt to impersonate legitimate SIP entities or AAA servers.

To address these threats, the SIP-AAA interface MUST support confidentiality, data origin authentication, integrity, and replay protection. In addition to this, bi-directional authentication between the SIP entity and the AAA server MUST be supported as well.

2.2 Authentication Requirements

This section outlines requirements on the SIP-AAA interface related to authentication.

2.2.1 Authentication Based on SIP Requests

The home AAA server MUST be able to authenticate a user based on any SIP request, except CANCELs and ACKs for non-2xx final responses.

CANCELs and ACKs for non-2xx final response are hop-by-hop requests that can be generated by proxies that do not have the user’s credentials.
2.2.2 Flexible Authentication of SIP Requests

The SIP-AAA interface MUST be flexible enough to accommodate a variety of authentication mechanisms used to authenticate SIP requests. In particular, the SIP-AAA interface MUST be able to accommodate all the authentication mechanisms mandated by the SIP specs (e.g., Digest authentication.)

2.3 Authorization Requirements

This section outlines requirements on the SIP-AAA interface related to authorization.

2.3.1 Ability to Authorize SIP Requests

The SIP-AAA interface MUST allow AAA servers to authorize any SIP request, except CANCELs and ACKs for non-2xx final responses.

CANCELs and ACKs for non-2xx final responses are hop-by-hop requests that can be generated by proxies. SIP servers receiving a CANCEL or a ACK for a non-2xx final response do not challenge them, as they would do with an end-to-end request. Instead, they check at the transport or network layer that the entity sending the CANCEL or the ACK is the same as the one that generated the request being canceled or acked.

2.3.2 Information Transfer

The SIP-AAA interface MUST allow transferring a wide range or set of information to be used to make an authorization decision. In particular, the SIP-AAA interface MUST allow a AAA server that is making an authorization decision to deliver the user profile to the SIP entity. Such a user profile may provide further information about the authorization decision to the SIP entity.

For instance, a SIP proxy receives an INVITE from user A addressed to user B. The SIP proxy queries a AAA server and gets the following answer: user A is authorized to call user B as long as the requests are routed through a particular SIP proxy server C. In this case, the SIP proxy needs to use SIP loose routing techniques to forward the INVITE so that it traverses SIP proxy C before reaching user B.

2.3.3 User De-authorization

The SIP-AAA interface MUST allow the AAA server to inform a SIP entity when a particular user is no longer authorized to perform a particular task, even if it is an ongoing task.
2.3.4 User Re-authorization

The SIP-AAA interface MUST allow the AAA server to inform a SIP entity that a particular authorization has been refreshed, and therefore, the user is still authorized to perform a particular task.

2.3.5 Support for Credit Control

The SIP-AAA interface MUST support credit control. That is, the AAA server has to be able to check the end user’s account for coverage for the requested service event charge before authorizing execution of that service event. Note that this requirement is related to accounting as well.

Credit control is useful to implement prepaid services where all chargeable events related to a specific account are prevented from the end user when the credit of that account is exhausted or expired.

2.4 Accounting Requirements

This section outlines requirements on the SIP-AAA interface related to accounting. Accounting is more than simple charging. Accounting may be a simple list of services accessed, servers accessed, duration of session, etc. Charging for SIP sessions can be extremely complex and requires some additional study. It is not the intent of this section to focus on charging.

The information available to be accounted is different at SIP proxies and at SIP UAs. When end-to-end encryption is used, proxies do not have access to some parts of the SIP messages while UAs have access to the whole messages. In addition to this, UAs typically have information about the session itself (e.g., number of audio packets exchanged during an audio session). Therefore, even if the SIP-AAA interface provides a means to transfer a wide range of data, some SIP nodes may not have access to it. In order to design a network, it is important to analyze which SIP nodes will be able to generate the desired account records.

2.4.1 Separation of Accounting Information

AAA accounting messages MUST be able to provide granular information based on different parameters.

For example, it should be possible to separate "session duration" information from other information generated via additional services (e.g., 3-way calling). Separating accounting information makes it possible to provide accounting information to different parties based
upon different aspects of the session.

2.4.2 Accounting Information Related to Session Progression

There MUST be support in the SIP-AAA interface for accounting transfers where the information contained in the accounting data has a direct bearing on the establishment, progression and termination of a session (e.g., reception of a BYE request).

2.4.3 Accounting Information Not Related to Session Progression

There MUST be support in the SIP-AAA interface for accounting transfers where the information contained in the accounting data does NOT have a direct bearing on the establishment, progression and termination of a session (e.g., an instant MESSAGE that is not related to any session).

2.4.4 Support for One-Time and Session-based Accounting Records

The SIP-AAA interface MUST allow SIP servers to provide relevant accounting information for billing and inter-network settlement purpose to the AAA servers. Both one-time event accounting records and session based (START, INTERIM, STOP records) accounting MUST be supported.

2.4.5 Support for Accounting on Different Media Components

The SIP-AAA interface MUST support accounting per media component (e.g., voice and video). That is, the SIP-AAA interface MUST be able to provide the AAA server with the types (e.g., voice and video) of the media streams of a given session.

Note, however, that some SIP entities do not have access to this information, which is typically carried in session descriptions. An example of a SIP entity with access to this information is a SIP UA (e.g., a gateway towards the PSTN.)

The SIP-AAA interface MUST enable different parties to be charged per media component.

2.4.6 Configuration of Accounting Generation Parameters

The SIP-AAA interface MUST allow AAA servers to communicate parameters for accounting generation.

2.4.7 Support for Arbitrary Correlations

Some networks need to be able to relate accounting information to
some aspect of the SIP messages involved. So, the SIP-AAA interface 
MUST allow the AAA server to correlate a particular AAA session with 
any aspect of the SIP messages. For example, a AAA server that 
receives accounting information about a SIP dialog may be interested 
in knowing the Call-ID of the SIP dialog.

3 Scenarios

This section outlines some possible scenarios for SIP and AAA 
interaction. These are purely illustrative examples, and do not 
impose any requirements.

Figure 1 shows the typical call flow between a SIP proxy that 
communicates to a AAA server that performs authentication and 
authorization. All the examples are based on this flow.

```
SIP      SIP      AAA
UAC      Proxy    Server
 |                    |
 |---METHOD---->     |--Is it OK?--->
 |                    |<-----OK------>
```

Figure 1: Call flow over the SIP-AAA interface

The SIP proxy receives a request with certain credentials. The SIP 
UAC that generated the request may have included the credentials 
after having been challenged by the proxy using a 407 (Proxy 
Authentication Required) response. The SIP proxy sends a request to 
the AAA server asking if it is OK to provide a particular service for 
this request. The service may be simply routing forward the request 
or may consist of a more complex service. The AAA server checks that 
the credentials are correct (authentication), and checks the user 
profile. The user profile indicates that it is OK to provide the 
service, and responds to the SIP proxy. The SIP proxy provides the 
service requested by the SIP UAC.
3.1 WLAN Roaming Using Third Party Service Providers

User A wants to establish a voice session over the Internet with user B. User A wants its SIP signalling to be routed through SIP proxy C, because it provides a call log service (i.e., SIP proxy C sends an email to user A once a month with the duration of all the calls made during the month.)

User A accesses the Internet using a WLAN access outside his home domain. User A, user B, SIP proxy C and the home AAA server of user A are all in different domains.

SIP proxy C challenges the initial INVITE from user A with a 407 (Proxy Authentication Required) response, and user A reissues the INVITE including his credentials. SIP proxy C consults user’s A home AAA server, which confirms that the credentials belong to user A and that SIP proxy C can go ahead and provide its service for that call. SIP proxy C routes the INVITE forward towards user B and sends an accounting message to the AAA server, which will be used later to charge user A for the service provided by SIP proxy C.

Figure 2: WLAN roaming user
3.2 Conditional Authorization

User A is not in his home domain, but he still uses SIP proxy C (which is in user’s A home domain) as the outbound proxy for an INVITE. SIP proxy C consults the home AAA server, which indicates that requests from user A have to be routed through SIP proxy D. SIP proxy C uses SIP loose routing so that the INVITE traverses D before reaching its destination. SIP proxy D will provide call log service for user A.

Figure 3: Conditional Authorization

4 Security Considerations

This document is informational in nature, so it does not directly affect the security of the Internet. However, security is a basic requirement of this work. Section 2.1.9 contains security requirements related to the SIP-AAA interface.

5 Acknowledgements

The authors would like to thank the participants of the SIP interim meeting, May 2002 for their comments. The authors would also thank Harri Hakala, Mary Barns, Pete McCann, Jari Arkko, Aki Niemi, Juha
Heinanen, Henry Sinnreich, Allison Mankin and Bernard Aboba for their comments.

The authors would like to thank the authors of the "AAA Requirements for IP Telephony/Multimedia" draft, which some of the information in this document is based on.

6 Authors’ Addresses

John Loughney
Nokia
Itamerenkatu 11-13
00180 Helsinki
Finland
electronic mail: John.Loughney@nokia.com

Gonzalo Camarillo
Ericsson
Advanced Signalling Research Lab.
FIN-02420 Jorvas
Finland
electronic mail: Gonzalo.Camarillo@ericsson.com

7 Normative References


8 Informative References


The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF’s procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.

Full Copyright Statement

Copyright (c) The Internet Society (2003). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.