An Incremental Carrier-Grade NAT (CGN) for IPv6 Transition
draft-jiang-v6ops-incremental-cgn-01.txt

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

This Internet-Draft will expire on December 25, 2009.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents in effect on the date of publication of this document (http://trustee.ietf.org/license-info). Please review these documents carefully, as they describe your rights and restrictions with respect to this document.
Abstract

Global IPv6 deployment was slower than originally expected in the last ten years. As IPv4 address exhaustion gets closer, the IPv4/IPv6 transition issues become more critical and complicated. Host-based transition mechanisms are not able to meet the requirements while most end users are not sufficiently expert to configure or maintain these transition mechanisms. Carrier Grade NAT with integrated transition mechanisms can simplify the operation of end users during the IPv4/IPv6 migration or coexistence period. This document proposes an incremental Carrier-Grade NAT (CGN) solution for IPv6 transition. It can provide IPv6 access services for IPv6-enabled end hosts and IPv4 access services for IPv4 end hosts while remaining most of legacy IPv4 ISP networks unchanged. It is suitable for the initial stage of IPv4/IPv6 migration. Unlike CGN alone, it also supports and encourages transition towards dual-stack or IPv6-only ISP networks.

Table of Contents

1. Introduction ... 3
2. Terminology .. 4
3. An Incremental CGN Solution 4
 3.1. Incremental CGN Solution Overview 4
 3.2. Choice of tunnelling technology 5
 3.3. Behaviour of Dual-stack Home Gateway 6
 3.4. Behaviour of Dual-stack Carrier-Grade NAT 6
 3.5. Impact for end hosts and remaining networks 7
 3.6. Discussion ... 7
4. Migration towards IPv6 Core Network 7
 4.1. Legacy communication in Phase 2 8
5. Security Considerations 9
6. IANA Considerations ... 9
7. Acknowledgements ... 9
8. Change Log .. 9
9. References .. 10
 9.1. Normative References 10
 9.2. Informative References 10
Author’s Addresses ... 12
1. Introduction

Up to now, global IPv6 deployment does not happen as was expected 10 years ago. The progress was much slower than originally expected. Network providers were hesitant to take the first move while IPv4 was and is still working well. However, IPv4 address exhaustion is now confirmed to happen soon. The dynamically-updated IPv4 Address Report [IPUSAGE] has analyzed this issue. It predicts early 2011 for IANA unallocated address pool exhaustion and middle 2012 for RIR unallocated address pool exhaustion. Based on this fact, the Internet industry appears to have reached consensus that global IPv6 deployment is inevitable and has to be done quite quickly.

IPv4/IPv6 transition issues therefore become more critical and complicated for the soon-coming global IPv6 deployment. Host-based transition mechanisms alone are not able to meet the requirements. They are too complicated for most end users who do not have enough technical knowledge to configure or maintain these transition mechanisms. New transition mechanisms with simple user-side operation are needed.

Carried Grade NAT (CGN) alone creates operational problems, but does nothing to help IPv4/IPv6 transition. In fact it allows ISPs to delay the transition, and therefore causes double transition costs (once to add CGN, and again to support IPv6).

Carrier-Grade NAT that integrates multiple transition mechanisms can simplify the operation of end user services during the IPv4/IPv6 migration or coexistence period. CGNs are deployed on the network side and managed/maintained by professionals. On the user side, new CPE devices may be needed too. They may be provided by network providers, depending on the specific business model. Dual-stack lite [DSLite] is a CGN-based solution that supports transition, but it requires the ISP to upgrade its network to IPv6 immediately. Many ISPs hesitate to do this as the first step.

This document proposes an incremental CGN solution for IPv6 transition. The solution is similar to DSLite, but the other way around. Technically, it mainly combines v4-v4 NAT with v6-over-v4 tunnelling functions along with some minor adjustment. It can provide IPv6 access services for IPv6-enabled end hosts and IPv4 access services for IPv4 end hosts, while leaving most of legacy IPv4 ISP networks unchanged. The deployment of this solution does not affect legacy IPv4 hosts with global IPv4 addresses at all. It is suitable for the initial stage of IPv4/IPv6 migration. It also supports transition towards dual-stack or IPv6-only ISP networks.
2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3. An Incremental CGN Solution

Most ISP networks are still IPv4. Network providers are starting to provide IPv6 access services for end users. However, at the initial stage of IPv4/IPv6 migration, IPv4 connectivity and traffic would be the majority for most ISP networks. ISPs would like to minimize the changes on their IPv4 networks. Switching the whole ISP network into IPv6-only would be considered as a radical strategy. Switching the whole ISP network to dual stack is less radical, but introduces operational costs and complications. Although some ISPs have successfully deployed dual stack routers, others prefer not to do this as their first step in IPv6. However, they currently face two urgent pressures - to compensate for an immediate shortage of IPv4 addresses by deploying some method of address sharing, and to prepare actively for the deployment of IPv6 address space and services. The solution described in this draft addresses both of these pressures by proceeding in two phases.

3.1. Incremental CGN Solution Overview

The incremental CGN solution we propose is illustrated as the following figure.

```
+-------------+
|IPv6 Internet|
+-------------+

+-----+    +--+     | IPv4 ISP +--+--+       |   +--------+
|v4/v6|----|DS|=====+==========| CGN |-------+---|  IPv4  |
| Host |    |HG|     |  Network +-----+   |   |   |Internet|
+-----+    +--+     +--------------------+---+   +--------+

()_6_o_4_ _t_u_n_n_e_l_()  +---------------------+

Figure 1: Phase 1 of incremental CGN solution with IPv4 ISP network

DS HG = Dual-Stack Home Gateway (CPE).
The above figure shows only Phase 1, in which the ISP has not significantly changed its IPv4 network. This solution enables IPv4 hosts to access the IPv4 Internet and IPv6 hosts to access the IPv6 Internet. A dual stack host can be treated as an IPv4 host when it uses IPv4 access service and as an IPv6 host when it uses IPv6 access service. In order to enable IPv4 hosts to access IPv6 Internet and IPv6 hosts to access IPv4 Internet, NAT-PT [RFC2766, RFC4966] (or its replacement) can be integrated with CGN. The integration of NAT-PT is out of scope for this document.

Two new types of devices need to be deployed in this solution: a dual-stack home gateway, which MAY follow the requirements of [6CPE], and dual-stack Carrier-Grade NAT. The dual-stack home gateway integrates IPv4 forwarding and v6-over-v4 tunnelling functions. It MAY integrate v4-v4 NAT function, too. The dual-stack CGN integrates v6-over-v4 tunnelling and carrier-grade v4-v4 NAT functions.

3.2. Choice of tunnelling technology

In principle, this model will work with any form of tunnel between the DS HG and the dual-stack CGN. However, tunnels that require individual configuration are clearly undesirable because of their operational cost. Configured tunnels based directly on [RFC4213] are therefore not suitable. A tunnel broker according to [RFC3053] would also have high operational costs.

Modified 6RD [6RD] technology appears suitable to support v6-over-v4 tunnelling with low operational cost. 6RD was designed for an IPv4 ISP scenario and allows re-use of slightly modified existing support for 6to4 [RFC3056]. 6RD using a 32-bit IPv6 prefix from the ISP’s address space will allow each CPE to receive a 64-bit prefix corresponding to its IPv4 address. If it is desired to delegate 56-bit prefixes to each customer, the 6RD prefix MUST be of 24 bits, as illustrated below. In that case, the ISP MUST have a general IPv6 prefix shorter than /24.

```
+----------------------.------------------------------+
| 6RD-relay IPv6 prefix| IPv4 address |
| of the ISP | of the customer site |
+----------------------'------------------------------+
<----- 24 bits -----><--------- 32 bits -------->
```

Figure 2: format of a 56-bit 6RD prefix

Modified GRE [RFC2784] with additional auto-configuration mechanism is also suitable to support v6-over-v4 tunnelling. In order to auto-configure GRE tunnel, an interactive mechanism between tunnel...
initiator and tunnel concentrator is needed. The parameters that tunnel configuration requires can be obtained through DHCPv6.

Other tunnelling mechanisms such as Intra-Site Automatic Tunnel Addressing Protocol (ISATAP) [RFC5214] or Virtual Enterprise Traversal (VET) [VET] could also be considered. ISATAP is an IPv6 transition mechanism meant to transmit IPv6 packets between dual-stack nodes on top of an IPv4 network. VET represents a functional superset of 6over4 [RFC2529] and ISATAP. It support tunnel autoconfiguration.

If the ISP has an entirely MPLS infrastructure between the CPE and the dual-stack CGN, it would also be possible to consider a 6PE [RFC4798] tunnel directly over MPLS. This would, however, only be suitable for an advanced CPE that is unlikely to be found as a home gateway, and is not further discussed here.

3.3. Behaviour of Dual-stack Home Gateway

When a dual-stack home gateway receives a data packet from an end host, it firstly checks whether the packet is IPv4 or IPv6. For IPv4 data, the HG can directly forward it if there is no v4-v4 NAT running on the HG. Or the HG translates packet source address from a HG-scope private IPv4 address into a CGN-scope private IPv4 address. The HG SHOULD record the v4-v4 address mapping information for inbound packets, just like normal NAT does.

For IPv6 data, the HG needs to encapsulate the data into an IPv4 tunnel, which has the dual-stack CGN as the other end. Then the HG sends the new IPv4 packet towards CGN.

The HG SHOULD record the mapping information between the tunnel and the source IPv6 address for inbound packets if HG uplinks to more than one CGN. Detailed considerations for the use of multiple CGNs by one HG are for further study.

3.4. Behaviour of Dual-stack Carrier-Grade NAT

When a dual-stack CGN receives a data packet from a dual-stack home gateway, it firstly checks whether the packet is a normal IPv4 packet or a v6-over-v4 tunnel packet. For a normal IPv4 packet, the CGN translates packet source address from a CGN-scope private IPv4 address into a public IPv4 address, and then send it to IPv4 Internet. The CGN SHOULD record the v4-v4 address mapping information for inbound packets, just like normal NAT does. For a v6-over-v4 tunnel packet, the CGN needs to decapsulate it into the original IPv4 packet and then send it to IPv6 Internet. The CGN SHOULD record the mapping information.
information between the tunnel and the source IPv6 address for inbound packets.

Depending on the deployed location of the CGN, it MAY use v6-over-v4 tunnels to connect to the IPv6 Internet.

3.5. Impact for end hosts and remaining networks

This solution does not affect the remaining networks at all. Legacy IPv4 ISP networks and their IPv4 devices remain in use. The existing IPv4 hosts, shown as the right box in Figure 1, either having global IPv4 addresses or behind v4-v4 NAT can connect to IPv4 Internet as it is now. Of course, these hosts can access IPv6 Internet through IPv4 ISP network by using IPv4-over-IPv6 tunnel technologies.

3.6. Discussion

It SHOULD be noted that for IPv4 traffic, this solution inherits all the problems of CGN (e.g., scaling, and the difficulty of supporting well-known ports for inbound traffic). Application layer problems created by double NAT are for further study.

If a different solution than v4-v4 NAT is chosen for IPv4 address sharing, for example [APLUSP], the present solution could be suitably modified, for example replacing the v4-v4 NAT function by the A+P gateway function.

However, for IPv6 traffic, a user behind the DS HG will see normal IPv6 service. It is strongly RECOMMENDED that all IPv6 tunnels support an MTU of at least 1500 bytes, to ensure that the mechanism usually does not cause fragmentation of IPv6 traffic. This, and the absence of NAT problems for IPv6, will create an incentive for users and application service providers to prefer IPv6.

ICMP filtering function MAY be included as part of CGN functions. Any firewall included in the CGN SHOULD follow the recommendations in [RFC4890].

4. Migration towards IPv6 Core Network

When the core network starts transition to IPv6, this solution can easily be transited into Phase 2, in which the ISP network is either dual-stack or IPv6-only.

For dual-stack ISP networks, dual-stack home gateways can simply switch off the v6-over-v4 function and forward both IPv6 and IPv4 traffic directly; the dual-stack CGN SHOULD only keep its v4-v4 NAT
function. However, this is considered an unlikely choice, since we expect ISPs to choose the approach described here because they want to avoid dual-stack deployment completely.

For IPv6-only ISP networks, the dual-stack lite solution [DSLinte], which also needs dual-stack home gateway and CGN devices, can be adopted for Phase 2. The best business model for this solution is that CPE has integrated the functions for both Phase 1 and 2, and can automatically detect the change. For example, the DS HG can use the appearance of IPv6 Route Advertisement messages or DHCPv6 messages as a signal that Phase 2 has started. Then when ISPs decide to switch from Phase 1 to Phase 2, it may be that only a configuration change or a minor software update is needed on the CGNs. The DS HG will then switch automatically to DStreamite mode. The only impact on the home user will be to receive a different IPv6 prefix.

Note that if the 6RD mechanism is used in Phase 1, the user may have a /64 prefix during Phase 1, but could get a shorter prefix such as /56 in Phase 2. This would be an improved service offering available as a result of the Phase 1 to Phase 2 transition.

It will not be necessary for all customers of a given ISP to switch from Phase 1 to Phase 2 simultaneously; in fact it will be operationally better to switch small groups of customers (e.g. all those connected to a single point of presence). This is a matter of planning and scheduling.

4.1. Legacy communication in Phase 2

We do not expect to see IPv6-only public services as long as there is an IPv4-only customer base in the world, for obvious commercial reasons. However, especially in Phase 2, IPv4/IPv6 intercommunication may become issues. [DSLintern] describes a proposal to enhance DS-lite solution with an additional feature to ease interconnection between IPv4 and IPv6 realms. Furthermore, home users may encounter the problem of reaching legacy IPv4-only public services from IPv6-only clients. This problem could already exist in Phase 1, but will become more serious as time goes on. It is proposed that each ISP should provide its IPv6-only customers with a network-layer translation service to satisfy this need. Such a service is not fully defined at this time, so we refer to it non-specifically as NAT64.

We propose that the NAT64 service should be provided as a common service located at the border between the ISP and the IPv4 Internet, beyond the dual stack CGN from the customer’s viewpoint. It MAY be integrated into CGN devices too. The question has been asked why it is better to do this than to distribute the NAT64 function by
locating it in (or near) the home gateway, so that relevant translation state resides only in the HG. While this might be suitable in Phase 1, when the ISP still provides full IPv4 connectivity, it would force all translated traffic into DSLite tunnels in Phase 2. This seems undesirable.

5. Security Considerations

Security issues associated with NAT have been documented in [RFC2663] and [RFC2993].

Further security analysis will be needed to understand double NAT security issues and tunnel security issues. However, since the tunnel proposed here exists entirely within a single ISP network, between the CPE and the CGN, the threat model is relatively simple. [RFC4891] describes how to protect tunnels using IPSec, but it is not clear whether this would be an important requirement. An ISP could deem its infrastructure to have sufficient security without additional protection of the tunnels.

The dual-stack home gateway will need to provide basic security for IPv6 [6CPESec]. Other aspects are described in [RFC4864].

6. IANA Considerations

This draft does not request any IANA action.

7. Acknowledgements

Shin Miyakawa discussed a related proposal at IETF72.

Useful comments were made by Fred Templin, Seiichi Kawamura, Remi Despres, Janos Mohacsi, Mohamed Boucadair and other members of the IETF V6OPS working group.

8. Change Log [RFC Editor please remove]

draft-jiang-incremental-cgn-00, original version, 2009-02-27

draft-jiang-v6ops-incremental-cgn-00, revised after comments at IETF74, 2009-04-23

draft-jiang-v6ops-incremental-cgn-01, revised after comments at v6ops mailing list, 2009-06-30
9. References

9.1. Normative References


9.2. Informative References


Author’s Addresses

Sheng Jiang
Huawei Technologies Co., Ltd
KuiKe Building, No.9 Xinxi Rd.,
Shang-Di Information Industry Base, Hai-Dian District, Beijing 100085
P.R. China
Phone: 86-10-82836774
Email: shengjiang@huawei.com

Dayong Guo
Huawei Technologies Co., Ltd
KuiKe Building, No.9 Xinxi Rd.,
Shang-Di Information Industry Base, Hai-Dian District, Beijing 100085
P.R. China
Phone: 86-10-82836284
Email: guoseu@huawei.com

Brian Carpenter
Department of Computer Science
University of Auckland
PB 92019
Auckland, 1142
New Zealand
Email: brian.e.carpenter@gmail.com